
CHAPTER 8

Smoothing operators

Lecture 8: 13 October, 2005

Now I am heading towards the Atiyah-Singer index theorem. Most of the results
proved in the process untimately reduce to properties of smoothing operators, so
let me review these today.

Recall that the space of smoothing operators on a compact manifold X acting
between bundles E and F is identified with smooth sections of the ‘big homomor-
phism bundle’ over X2 :

(L8.1) Ψ−∞(X;E,F ) = C∞(X2;π∗
LF ⊗ π∗

RE′ ⊗ π∗
RΩ)

where we identify Hom(E,F ) = π∗
LF ⊗ π∗

RE′. These are bounded operators on L2

sections as follows directly from the Cauchy-Schwarz inequality

(L8.2)

Ψ−∞(X;E,F ) ∋ A : L2(X;E) −→ L2(X;F ),

Au(x) =

∫

X

A(x, y)u(y), ‖Au‖ ≤ ‖A‖L2‖u‖L2 .

This just uses the square-integrability of the kernel.

Lemma 15. If A ∈ Ψ−∞(X;E) (so E = F ) and its norm as a bounded operator
on L2(X;E) is less than 1 then (Id+A)−1 = Id +B for B ∈ Ψ−∞(X;E).

Proof. Since ‖A‖ < 1 the Neumann series converges as a sequence of bounded
operators so

(L8.3) B =
∞
∑

l=1

(−1)lBl

is bounded on L2(X;E). As a 2-sided inverse (Id +A)(Id +B) = Id = (Id +B)(Id+A)
which shows that

(L8.4) B = −A + A2 + ABA.

From this it follows that B ∈ Ψ−∞(X;E) since ABA ∈ Ψ−∞(X;E). Indee the A
on the right may be considered locally as a smooth map from X into L2(X;E) and
hence remains so after applying B but then applying the second copy of A gives a
smooth map into C∞(X;E) so the kernel of the composite is actually smooth on
X2. �

Corollary 2. For any compact manifold and complex vector bundle E

(L8.5) G−∞(X;E) =
{

A ∈ Ψ−∞(X;E); (Id +A)−1 = Id+B, B ∈ Ψ−∞(X;E)
}
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74 8. SMOOTHING OPERATORS

is an open subset of Ψ−∞(X;E) which is a topological group.

Proof. For any point A ∈ G−∞(X;E) the set A + B such that ‖B‖ <
1/‖(Id +A)−1‖ is open in Ψ−∞(X;E) and for such B it follows from the discussion
above that A+B ∈ G−∞(X;E) since (Id+A+B)−1 = (Id+A)−1(Id+B(Id+A)−1)−1.
Similarly the maps A → (Id +A)−1 − Id and (A,B) −→ (Id+A)(Id +B) − Id are
continuous. �

Notice that I insist on G−∞(X;E) ⊂ Ψ−∞(X;E) onto to make such statements
easy to say. ‘Really’ of course you should think of G−∞(X;E) as something like
the invertible bounded operators on L2(X;E) which are of the form Id+A with
A ∈ Ψ−∞(X;E).

In fact, as we shall see later, G−∞(X;E) ⊂ Ψ−∞(X;E) is actually an open
dense subset, just like the invertible matrices in all matrices. As a topological
algebra it is independant of X and E (provided dimX > 0).

Definition 4. An operator has finite rank if its range is finite dimensional.

We are particularly interested in finite rank smoothing operators.

Lemma 16. A smoothing operator A ∈ C∞(X;E,F ) is of finite rank if and
only if there are elements fi ∈ C∞(X;F ), ei ∈ C∞(X;E′) i = 1, . . . , N and ν ∈
C∞(X; Ω) such that

(L8.6) A =

N
∑

i=1

fi(x)ei(y)ν(y).

Proof. By definition if A ∈ C∞(X;E,F ) has finite rank, its range must be a
finite dimensional subspace of C∞(X;F ). Let the fi be a basis of this space. Thus,

we can write Au =
N
∑

i=1

(Aiu)fi where Ai : C∞(X;E) −→ C is continuous. If the fi

are orthonormalized with respect to an hermitian inner product on F and a density
on X then Aiu = 〈Au, fi〉 so these functionals are given by pairing with the smooth
density

(L8.7) Ai =

∫

X

〈A(x, y), fi〉F ν(x) ∈ C∞(X;E′ ⊗ Ω)

Dividing by a fixed density 0 < ν ∈ C∞(X; Ω) gives ei = Ai/ν ∈ C∞(X;E′) and
this shows that the kernel can be written in the form (L8.6). �

If we insist that the ei be independent, or even orthonormalized with respect
to some choice of hermitian inner product on E (hence on E′) and density on X
then the kernel takes the form

(L8.8) A =

N
∑

i=1

aijfi(x)ej(y)ν(y).

We may also use the antilinear isomorphism of E′ and E in terms of the chosen
inner product to think of the ei as sections of C∞(X;E). Then (L8.8) can be written
rather fancifully as

(L8.9) A =

N
∑

i=1

aijfi(x)ej(y)ν(y), aij ∈ C,
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where the operation ei is the antilinear isomorphism. Then the action of A is
through the inner product

(L8.10) Au(x) =
∑

i,j

aij

∫

X

〈ei(y), u(y)(y)〉fi(x).

If E = F then we can orthonormalize the collection of all the ei and fj together
and denote the result as ei. In this case we have embedded A inside the collection
of N × N matrices via (L8.10) which now becomes

(L8.11) Au(x) =
∑

i,j

aij

∫

X

〈ei(y), u(y)〉ei(x).

Notice in fact that these finite rank smoothing operators do form a subalgebra of
Ψ−∞(X;E) which is isomorphic as an algebra to M(N, C).

Lemma 17. The finite rank operators are dense in Ψ−∞(X;E,F ).

I will give a rather uninspiring proof of this in which the approximation is done
rather brutally. One can give much better approximation schemes, and I will,
but first one needs to show that such approximation is possible (since this result
is so basic it is actually used in the spectral theory which lies behind the better
approximations. . . ).

Proof. In the special case that XT
n is a torus and E = C

k and F = C
k′

are trivial bundles we can use Fourier series. Let ν = |dθ1 . . . dθn| be the standard

density on the torus then and element A ∈ Ψ−∞(Tn; Ck, Ck′

) is a k×k′ matrix with
entries in Ψ−∞(Tn), so acting on functions. The kernel, using the trivialization of
the density bundle, is just an element a ∈ C∞(T2n) which we can therefore expand
in Fourier series. Let us write this expansion with the sign reversed in the second
variable (in T

n)

(L8.12) a(θ, θ′) =
∑

I,J

aIJeiJ·θe−iJ·θ′

where the sum is over all I, J ∈ Z
n and the coefficients are rapidly decreasing,

because of the smoothness of a

(L8.13) aiJ = (2π)−2n

∫

T2n

e−iI·θiJ·θ′

dθdθ′.

Since this double Fourier series converges rapidly the truncated kernels

(L8.14) aN (θ, θ′) =
∑

|I|,|J|≤N

aIJeiJ·θe−iJ·θ′

converge to a in the C∞ topology. Clearly aN is a finite rank smoothing operator,
so this proves the result in the case of the torus.

In the general case of a compact manifold X and bundles E, F, choose a covering
of X by coordinate patches Ui over which both bundles are trivial and a partition
of unity of the form ρ2

p subordinate to this cover. We may think of each of the Up

as embedded as an open subset of T
n = R

n/2πZ
n, by translating and scaling Up

until it is contained in (0, 2π)n. Then we may apply the discussion above to the
kernel ρpA(x, y)ρq(y) which may be interpreted as acting between trivial bundles
over the torus. Of course, from (L8.14) the resulting approximating finite rank
kernels aN,p,q will not have support in Up × Uq when regarded as subsets of T

2n.
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However ρp(x)aN,p,qρq(y) does have such support and is of the form (L8.9) with

the ej being the eiJ·θ′

ρq(y) and similarly for the fi. Thus, summing these finitely
many kernels we obtain a sequence of finite rank operators on X converging to A
in the C∞ topology. �

We need to consider families of operators, so note that this proof of approxi-
mation works uniformly on compact sets with the ei and fj fixed, i.e. independent
of the parameters so only the coefficients in the approximating kernels depend on
the parameters.

Now, recall that I have defined the odd K-theory of a compact manifold as

(L8.15) K−1(X) = [X,G−∞(Y ;E)] = π0(C
∞(X;G−∞(Y ;E))

So this includes the claim that the result is independent of the choice of Y and the
bundle E (provided that dimY > 0). Note that
(L8.16)
C∞(X;G−∞(Y,E)) = {K ∈ C∞(X×Y 2; Hom(E)⊗π∗

LΩ); ∃ (Id +K(x, ·))−1 ∀ x ∈ X}.

So the equivalence relation defining K−1(X) is just that K ≡ K ′ if there exists

K̃ ∈ C∞(X × [0, 1];G−∞(Y ;E)) such that K̃
∣

∣

t=0
= K and K̃

∣

∣

t=1
= K ′.

The standard definition of odd K-theory is as the stable homotopy classes of
(continuous) maps in GL(N, C). I will not work with this directly, but if you think
a little about the proof below that K1(X) is independent of the choice of Y and E
you will see how to show the equivalence of (L8.15) and the standard definition.

Proposition 15. The groups G−∞(Y ;E) are connected and the set (L8.15)
for any compact manifold X is independent of the choice of Y and E, so given
two choices Y,E and Z,F there is a natural bijection between [X;G−∞(Y ;E)] and
[X,G−∞(Z,F )].

Proof. That G−∞(Y ;E) is connected follows from the fact that that it is lo-
cally connected, so if aN → a in G−∞(Y ;E) then for large N, aN may be connected
to a and the fact that GL(N ; C) is connected. Or once can proceed more directly,
as discussed below.

Let us choose a fixed ‘model’, namely Y = S and E = C. Now, we may embed

(L8.17) G(N, C) ⊂ G−∞(S)

by mapping the N × N matrices to the smoothing operators

(L8.18) M(N, C) ∋ akl 7−→ A =
∑

k,l=1,N

(akl − δkl)e
ikθe−lθ′

|dθ′|.

The identity N × N matrix is subtracted here since we want GL(N, C) to be em-
bedded as a subgroup of G−∞(S), which it is for each N.

Given some compact manifold Y and bundle E any smooth map A : X ∋
x −→ A(x) ∈ G−∞(Y ;E) may be approximated by finite rank operators A(N)

as in Lemma 17. Choosing a basis as in (L8.11) we may identify the coefficients

δkl +akl with an element of GL(N, C) and then use (L8.18) to map it to Ã : X −→
G−∞(S). It is important to see that this procedure is well defined at the level of

homotopy classes. That is, that the element [Ã] ∈ π0(X;G−∞(S)] is independnet of
choices. With the approximations fixed, the procedure only depends on the choice
of basis. Since (see the remarks following Lemma 17) the basis is independent
of the parameters in X the choice only corresponds to a choice of basis (possibly
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including redundant elements). Add redundant elements to the basis does not

change the family Ã and changing the basis results in its conjugation by a fixed
element of G−∞(S), replacing Ã by B−1Ã(x)B, B ∈ G−∞(S). Since we know that
G−∞(Y,E) is connected, B may be smoothly connected to the identity, so the
conjugated element gives the same homotopy class. All families sufficiently close
to a given family are in the same homotopy class so in fact for large enough N
the homotopy class of Ã only depends on the homotopy class of A. Applying the
construction to X × [0, 1] shows that homotopic families lift to the same homotopy
class, so the map

(L8.19) π0(X;G−∞(Y ;E)) −→ π0(X;G−∞(S))

is well-defined. An inverse to it can be constructed in essentially the same way, so
this is a bijection independent of choices. �

The trace of matrices may be defined as the sum of the diagonal elements

(L8.20) tr(aij) =
∑

i

aii.

It is invariant under change of basis since if a′ = b−1ab then

(L8.21) tr(a′) =
∑

i

(b−1ab)ii =
∑

i,j,k

b−1
ij ajkbki =

∑

i,j,k

ajkbkib
−1
ij = tr(a).

Thus, tr : hom(V ) −→ C is a well-defined linear map for any vector space V.
If we apply this to the finite rank operators in (L8.11) we find, using the assume

orthonormality of the basis, that

(L8.22)
∑

i

aii =
∑

i

aii

∫

Y

〈ei(y), ei(y)〉 =

∫

Y

tr(A(y, y))ν(y)

in terms of the trace on hom(E) of which A(y, y) = A
∣

∣

Diag
is a section. Thus for

general smoothing operators we may simply define

(L8.23) Tr(A) =

∫

Y

tr(A
∣

∣

Diag
).

Proposition 16. The trace functional is a well-defined continuous linear map

(L8.24) Tr : Ψ−∞(Y ;E) −→ C

which satisifies

(L8.25) Tr([A,B]) = 0 ∀ A, B ∈ Ψ−∞(Y ;E).

Proof. If A, BΨ−∞(Y ;E) then

Tr(AB) = Tr(C), C(x, z) =

∫

Y

A(x, y) · B(y, z)

where the · refers to composition in the ‘Hom(E)’ bundles. Thus in fact

(L8.26) Tr(AB) =

∫

Y

tr (A(x, y) · B(y, x)) =

∫

Y

tr (B(y, x) · A(x, y)) = Tr(BA)

using the same identity for hom(E). �
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Note that it follows from (L8.22) that under approximation by smoothing op-
erators,

(L8.27) Tr(A) = lim
N→∞

Tr(AN ).

Using this one can show that the determinant extends to smoothing operators
in the following sense.

Theorem 4. (Fredholm) There is a unique map

(L8.28) Ψ−∞(Y ;E) ∋ A −→ det(Id +A) ∈ C

which is entire and satisfies

(L8.29)

det (Id +A)(Id +B)) = det(Id+A) det(Id +B)

∂s det(Id +sA)
∣

∣

s=0
= Tr(A)

A ∈ G−∞(Y ;E) ⇐⇒ A ∈ Ψ−∞(Y ;E), det(Id +A) 6= 0.

From this it follows that Ψ−∞(Y ;E) ⊂ G−∞(Y ;E) is an open dense subset.
The determinant can be defined on G−∞(Y ;E) by using the connectedness to
choose a smooth curve γA : [0, 1] −→ G−∞(Y ;E) from Id to a given point A and
then setting

(L8.30) det(Id +A) = exp(

∫ 1

0

Tr

(

(Id +γA(t))−1 dγA(t)

dt

)

dt.

Of course it needs to be shown that this is independent of the choice of γA, that it
extends smoothly to all of Ψ−∞(Y ;E) (as zero on the complement of G−∞(Y ;E)
and that it satisfies (L8.29).

8+. Addenda to Lecture 8

There are many other results on smoothing operators which reinforce the sense
in which they are ‘infinite rank matrices.’ Think for instance of the spectrum.

Proposition 17. If A ∈ Ψ−∞(X;E) then

(8+.31)

spec(A) = {z ∈ C \ {0}; (z Id−A) : L2(X;E) −→ L2(X;E) is not invertible}

is discrete except (possibly) at 0 ∈ C

and for each 0 6= z ∈ spec(A) the associated generalized eigenspace
(8+.32)
E(z) = {u ∈ C∞(X;E); (z Id−A)Nu = 0 for some N ∈ N} is finite dimensional.

Proof. If we could use the Fredholm determinant – although at this stage I
have not finished the proof of its properties – then the discreteness would be clear
once since certainly

(8+.33) spec(A) ⊂ {z ∈ C; det(Id−
A

z
) = 0}

and the latter is the set of zeros of a holomorphic function on C\{0}. So, we would
only need to show that the determinant is not identically zero.

In any case we can proceed more directly, without using the determinant but
instead using ‘analytic Fredholm theory’. First of all, if we give E an inner product
and choose a density on Y then we know that ‖A/z‖ = ‖A‖/|z| so for |z| > ‖A‖
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it follows that (Id−A
z
)−1 exists. Thus spec(A) ⊂ {z; |z| ≤ ‖A‖}, meaning that

(A−z Id)−1 is a holomorphic family of bounded operators, and hence map in G−∞

for ‖z‖ > ‖A‖. �




