
CHAPTER 6

Ellipticity

6+.1. Bundles and sections.

Lecture 6: 4 October, 2005

First I want to talk about the basic properties of smoothing operators since to
a large extent the study of more operators, particularly elliptic pseudodifferential
operators, is ultimately reduced to the study of smoothing ‘errors’.

Thus, if X is a compact manifold and E and F are complex vector bundles over
X then the space of smoothing operators on X between sections of E and sections
of F is

(L6.1) Ψ−∞(X;E,F ) = C∞(X2; Hom(E,F )⊗ ΩR).

Here, Hom(x,x′)(E,F ) = hom(Ex′ , Fx) is the ‘big’ homomorphism bundle. Using
the tensor product characterization of homomorphism it can also be identified with
the ‘exterior’ tensor product π∗

LF ⊗ π∗
RE′, the tensor product of the pull-back of

F from the left fact with the pull-back of the dual of E from the right factor of
X. The bundle ΩR is the ‘right density bundle’ on X2, just the pull-back from the
right factor of the density bundle. It allows invariant integration.

As operators each Ψ−∞(X;E,F ) defines a linear map A : C∞(X;E) −→
C∞(X;F ) (with which we always identify it) given by

(L6.2) Af(x) =

∫
X

A(x, x′)f(x′).

Here, the product of A(x, x′) and f(x′) implicitly includes the action of A as a
homomorphism from Ex′ to Fx. Thus, for fixed x, the integrand is a section of
Fx ⊗ ΩR as a bundle over X in the variable x′, i.e. Fx is a trivialized bundle and
the integral makes invariant sense.

Basic properties of smoothing operators

• Smoothing operators are characterized (by standard distribution theory)
as those continuous linear operators A : C∞(X;E) −→ C∞(X;F ) which
extend by continuity to continuous linear operators A : C−∞(X;E) ←→
C∞(X;F ) where C−∞(X;E) is the usual space of distributional sections
of F over X. I will not use this characterization below, but it is sometimes
handy.

• Smoothing operators extend by continuity to compact operators A : L2(X;E) −→
L2(X;F ). This is easy to prove using some form of the Ascoli-Arzela theo-
rem which shows that the inclusion C0(X;F ) −→ L2(X;F ) is compact, or
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58 6. ELLIPTICITY

the usual form of Ascoli-Arzela which shows that C1(X;F ) −→ C0(X;F )
is compact, and hence so is C1(X;F ) −→ L2(X;F ). From the inte-
gral formula (L6.2) it follows that smoothing operators define continuous
maps A : L2(X;E) −→ C1(X;F ) the compactness follows. Note that
smoothing operators are not characterized as the continuous operators
A : L2(X;E) −→ C∞(X;F ). However if an operator has this property
and its adjoint, with respect to smooth inner products on the bundles and
a smooth density, has the same property, A∗ : L2(X;F ) −→ C∞(X;E)
then A is smoothing.

• Now consider the special case Ψ−∞(X;E) = Ψ−∞(X;E,E) of operators
acting on sections of a fixed bundle. Then Id+A is Fredholm as an oper-
ator A : C∞(X;E) −→ C∞(X;E) or A : L2(X;E) −→ L2(X;E). Namely
(1) The null space is finite dimensional
(2) The range is closed
(3) The range has a finite dimensional complement.

Proof. The null space is

(L6.3) null(Id+A) = {u ∈ L2(X;E);u + Au = 0}

so for any element u ∈ null(Id +A) it follows that u = −Au ∈ C∞(X;E). Thus the
unit ball {u ∈ null(Id+A); ‖u‖ = 1} is precompact in L2(X;E) and hence compact
(since it is closed). It is a standard theorem that any Hilbert space with a compact
unit ball is finite dimensional so proving (1) for L2. The null space on C∞(X;E) is
the same as the null space on L2(X;E) so this is also finite dimensional.

To see that the range is close, suppose fn ∈ L2(X;E) and fn → f in L2(X;E)
and fn = (Id +A)un for un ∈ L2(X;E). We can assume that un ⊥ null(Id+A) and
then we wish to show that un → u in L2(X;E) which implies that f = (Id+A)u.
So, suppose first that the sequence ‖un‖ is unbounded. Passing to a subsequence,
and relabelling, we may suppose that ‖un‖ → ∞. Thus vn = un/‖un‖ has unit
norm and (Id+A)vn = fn/‖un‖ → 0 in L2(X;E). Passing to a subsequence we
may assume that vn ⇀ v converges weakly (by the weak compactness of the unit
ball in a Hilbert space). Then vn = Avn + fn must converge strongly, since A is
a compact operator. Thus vn → v with ‖v‖ = 1 and v ∈ null(Id+A) which is
a contradiction, since un ⊥ null(Id+A) implies v ⊥ null(Id+A). So in fact the
assumption was false and ‖un‖ is necessarily bounded. Then the same argument
shows that on an subsequence un ⇀ u and hence un = Aun+fn → Au+f converges
strongly and (2) follows.

Recall that the adjoint of a bounded operator is defined if one has a smooth
(sesquilinear) inner product on the fibres of E and a smooth positive density ν on
X – one needs these really to fix the inner product on L2(X;E),

(L6.4) 〈u, v〉 =

∫
X

〈u(x), 〉Ex
dν(x)

by

(L6.5) 〈Au, v〉 = 〈u,A∗v〉 ∀ u, v ∈ L2(X;E).

In the case of a smoothing operator (and in fact in general) it follows that the kernel
of A∗ is A∗(x′, x) in terms of ∗ acting on Hom(E,E). Thus A∗ ∈ Ψ−∞(X;E) is
also a smoothing operator.
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Directly from the definition of the adjoint, the orthcomplement of the range of
any bounded operator is always the null space of A∗

(L6.6) 〈Au, v〉 = 0 ∀ u ∈ L2(X;E)⇐⇒ A∗v = 0.

Thus null(Id+A∗) is a complement to the range of Id+A which is therefore finite
dimensional, provign (3).

The range of Id+A is closed in C∞(X;E) by essentially the same argument.
Namely if (Id +A)un = fn → f in C∞(X;E) then (since the null spaces on L2(X;E)
and C∞(X;E) are the same) we may assume that un ∈ C

∞(X;E) and un → u in
L2(X;E) by the discussion above. Then un = −Aun + fn → u in C∞(X;E). It
also follows that the range of Id+A has finite codimension in C∞(X;E), in fact
null(Id +A∗) is still a complement (in the algebraic sense that

(L6.7) (Id+A)C∞(X;E) + null(Id +A∗) = C∞(X;E).

In fact we know that the left side is a closed subspace of the right, so if they were not
equal then there would be a non-trivial distributional section v ∈ C−∞(X;E) such
that 〈v, (Id +A)u〉 = 0 for all u ∈ C∞(X;E) and v(w) = 0 for all w ∈ null(Id+A∗).
However the first condition is just v + Av = 0 as a distribution, but then v = −Av
and A : C−∞(X,E) −→ C∞(X;E) so together these imply v = 0. �

Now consider differential opertors, P ∈ Diffk(X;E,F ). These are operators
P : C∞(X;E) −→ C∞(X;F ) which are given everywhere locally, in terms of lo-
cal coordinates and trivializations of the bundles, by a finite sum of derivatives
composed with a matrix

(L6.8) P =
∑
|α|≤k

pα(x)Dα
x .

We say that such an operator is elliptic if the leading part of this sum

(L6.9)
∑
|α|=k

pα(x)ξα is invertible for each ξ ∈ R
n \ {0}

and for each x (i.e. is invertible as an N ×N matrix).
The sum in (L6.9) makes invariant sense as a section over T ∗X \ {0} of the

pull-back from the base of the bundle hom(E,F ). To see this we simply have to
give an invariant definition of its value at a point of T ∗X! Choose such a point,
Ξ ∈ T ∗

x̄ X. Thus, near x̄ ∈ X we may choose f ∈ C∞(X), real valued, such that
df(x̄) = Ξ. Now, given an element ū ∈ Ex̄ choose u ∈ C∞(X;E) such that u(x̄) = ū.
Then, for t ∈ R,
(L6.10)
P (ueitf ) = eitfU(t, x), U(t, x) ∈ C∞(R×X;F ), U(t, x̄) = tkσk(P )(x̄, df(x̄)+O(tk−1.

We can use (L6.8) to see this. Thus, U(t) must be a polynomial of degree at most
k in t and the leading term, of order k, at x̄ is just

(L6.11)
∑
|α|=k

pα(x̄)(df(x̄)α

which is just (L6.9). Thus in fact the principal symbol of a differential operator of
order m, defined locally by (L6.9) is in fact a well defined section

(L6.12) σk(P ) ∈ C∞(T ∗X; hom(E,F )) is a fibre-polynomial of degree k.
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Now recall that we defined pseudodifferential operators in terms of conormal
distributions

(L6.13) Ψm(X;E,F ) = Im′

(X2,Diag;Hom(E,F )⊗ ΩR)

and showed that the acted on smooth sections

(L6.14) A : C∞(X;E)←→ C∞(X;F ), Au(x) =

∫
X

A(x, x′)u(x′).

We also showed, locally, that differentiation of a conromal distribution gives a
conormal distribution with the order increased by one. Since we also know that
conormal distributions form a C∞ module, it follows that
(L6.15)

P (x,Dx) : Im′

(X2,Diag;Hom(E,F )⊗ΩR) −→ Im′+k(X2,Diag;Hom(E,F )⊗ΩR).

This in fact shows that

(L6.16) Diffk(X;E,F )Ψm(X;F,E) ⊂ Ψm+k(X;F ).

Now, consider what happens to the symbol of A ∈ Ψm(X;F,E) under this
action on the left by a differential operator. The symbol can be computed locally
near a point of the diagonal and in terms of any normal fibration. In particular we
can choose the normal fibration to be the ‘right fibration with fibres given by the
constancy of the second variable x′. That is a local fibre of the normal fibration (in
local coordinates and with respect to a local trivialization of the bundles) is just
x′ = x̄ is constant. Thus P (x,Dx) just acts by differentiation on the fibre so the
kernel of PA on this fibre is

(L6.17) P (x,Dx)A′(x− x̄′, x̄′)

where the left variable has been shifted so that it vanishes at x̄′, i.e. where the
diagonal meets the fibre, and A(x − x̄′, x̄′) is the kernel of A on this fibre. Now,
it follows from (L6.8) that any lower order terms in P can only raise the order at
most to m+ k− 1. Since we know that multiplication by xj − ξ′j lowers the oder by
1 (since it vanishes at the singular point) we see that the symbol of PA, modulo
lower order terms, is just

(L6.18) σk(P )(x̄, ξ)σm(A).

Now, since we are assuming that P is elliptic everywhere, in particular σk(x̄, ξ)
is a homogeneous polynomial which does not vanish outside the origin. From the
earlier discussion of this in the case of conormal distributions at a point, we know
that we can solve the problem

(L6.19) PA = IdF +R, A ∈ Ψ−k(X;F ;E), B ∈ Ψ−∞(X;F )

provided of course that P ∈ Diffk(X;E,F ) is elliptic.

Proposition 11. If P ∈ Diffk(X;E,F ) is elliptic then there exists A ∈
Ψ−k(X;F,E) such that

(L6.20)
P ◦A = IdF +RF , RF ∈ Ψ−∞(X;F ), A ◦ P = IdE +RE , RE ∈ Ψ−∞(X;E)

from which it follows that P : C∞(X;E) −→ C∞(X;F ) is Fredholm.
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Proof. From the existence of a right parametrix, A ∈ Ψ−k(X;F,E), satifying
the first condition in (L6.20) we can conclude that the range is closed and of finite
codimension. Indeed the range of P certainly contains the range of PA and this is
equal to the range of Id+RF . This, as we know, is a closed subspace of C∞(X;F ) of
finite codimension, so any subspace of C∞(X;F ) containing it must also be closed
and of finite codimension.

To examine the null space we need the second condition in (L6.20). First we
try to construct an element A′ ∈ Ψ−k(X;F,E) satisfying this condition without
worrying whether it is related to A. To do so, note that we may take adjoints and
the condition becomes

(L6.21) P ∗ ◦ (A′)∗ = Id+R∗
E .

From the local discussion above we see that for differential operators,

(L6.22) σk(P ∗) = (σk(P ))∗

so P is elliptic if and only if P ∗ is elliptic. Thus we may apply the same construction
as above to find (A′)∗ ∈ Ψ−k(X;E,F ), satifying (L6.21) and then A′ is a right
parametrix. From this we conclude that the null space of P is finite dimensional,
since it is contained in the null space of Id+RE .

So, it only remains to see that there is an element A ∈ Ψ−k(X;F,E) which
is simultaneously a left- and a right-parametrix. Consider the left parametrix just
constructed. From the identity for the right parametrix, and associativity of prod-
ucts, it satisfies
(L6.23)
A′ = A′(PA−RF ) = (A′P )A−A′RF = A+REA−A′RF = A+S, S ∈ Ψ−∞(X;F,E).

Thus the left and right parametrices differ by a smoothing operator, either of them
is a two-sided parametrix. �

In fact, and such elliptic operator has a ‘generalized inverse’. If we choose
inner products and densities so that the orthocomplement of the range of P may
be identified with the null space of P ∗ and the orthocomplement of the null space
of P may be identified with the range of P ∗ then there is a unique operator A :
C∞(X;F ) −→ C∞(X;E) which vanishes on the null space of P ∗ has range exactly
the range of P ∗ and which is a two-sided inverse of P as a map from the range of
P ∗ to its own range. In fact, as we shall see next time, this is a pseudodifferential
operator (i.e. differs from a parametrix A by a smoothing operator).

L6.2. Hodge theory. Next I want to remind you how the Fredholm proper-
ties of elliptic operators on C∞ spaces lead to Hodge theory, either for the usual
exterior differential complex or some other elliptic complex (such as the Dolbeault
complex).

On a compact manifold, consider the exterior form bundle ΛX. Thus Λk
xX is

totally antisymmetric part of the k-fold tensor power of T ∗
x X. Then, as is well-known

(and this is really the reason for the definition)

(L6.24) d : C∞(X; ΛpX) −→ C∞(X; Λp+1X), d2 = 0

where we may think of d : C∞(X; Λ∗X) −→ C∞(X; Λ∗) as the direct sum of these
operators or write it out as a complex

(L6.25) · · ·
d
//C∞(X; ΛpX)

d
//C∞(X; Λp+1X)

d
// · · · .
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The definition of the symbol of a differential operator in (L6.10) can be applied
since

(L6.26) d(eitfu) = eitf (itdf ∧ u + du) =⇒ σ1(d)(x, ξ) = iξ ∧ .

In particular of course σ1(d)2 = 0, but that follows directly from the property for
d.

If we consider a general differential complex, so a sequence of differential oper-
ators Pi ∈ Diffk(X;Ei, Ei+1) (the orders can be taken to be different but it makes
for heavier algebra) such that Pi+1 ◦Pi = 0. Such a complex is said to be elliptic if

(L6.27) · · ·
σk(Pi−1)(x,ξ)

//Ei,x

σk(Pi)(x,ξ)
//Ei+1,x

σk(Pi+1)(x,ξ)
// · · ·

is exact ∀ (x, ξ) ∈ T ∗X \ 0X .

The deRham complex (L6.25) is elliptic in this sense, since for any 0 6= ξ ∈ T ∗
x X

the elements α ∈ Λp
xX satisfying ξ ∧ α = 0 are exactly those which are of the form

ξ ∧ β for some β ∈ Λk−1X – to see this simply introduce coordinates in which
ξ = dx1 and decompose forms accordingly.

Such an elliptic complex is ‘almost exact’ in the sense that the cohomology
(originally called the hypercohomology) of the complex is finite dimensional.

Proposition 12. If

(L6.28) · · ·
Pi−1

//C∞(X;Ei)
Pi

//C∞(X;Ei+1)
Pi+1

// · · ·

is an elliptic complex of differential operators of order k then the range of each Pi

is closed in C∞(X;Ei+1) and

(L6.29) null(Pi)/Pi−1C
∞(X;Ei−1) is finite dimensional.

Proof. Hodge’s idea was to choose inner products and densities (well he ac-
tually did it in a very algebraic setting) and consider the adjoint complex. Since
the adjoint of a product is the product of the adjoints in the opposite order, we get
an elliptic complex going the other way

(L6.30) · · · C∞(X;Ei)
P∗

i−1
oo C∞(X;Ei+1)

P∗

i
oo · · ·

P∗

i+1
oo

Now each of the operators

(L6.31) ∆i = P ∗
i Pi + Pi−1P

∗
i−1 ∈ Diff2k(X;Ei)

is elliptic. Indeed, its symobl at each point (x, ξ) ∈ T ∗
x X \ {0} is

(L6.32) σ2k(∆i) = σk(Pi)
∗σk(Pi) + σk(Pi−1)σk(Pi−1)

∗.

This is a self-adjoint matrix and and element of its null space satisfies
(L6.33)
〈σ2k(∆i)u, u〉 = |σk(P )iu|+ |σk(Pi−1)u| = 0 =⇒ σk(Pi−1)

∗u = 0 = σk(Pi)u.

Since the null space of σk(Pi−1)
∗ is a complement to the range of σk(Pi−1), this

implies u is zero.
Thus the null space of ∆i is finite dimensional and its range is closed and has

orthocomplement this same null space, by self-adjointness. Again by integration
by parts on X, the null space of ∆i is the intersection of the null spaces of Pi and
P ∗

i−1. It follows that for each i we may decompose

(L6.34) C∞(X;Ei) ∋ u = u0 ⊕ Pi−1vi−1 ⊕ P ∗
i vi+1, Piu0 = 0 = P ∗

i−1u0
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where the decomposition is orthogonal and unique. The range of Pi−1 must there-
fore be closed (since the closure in the C∞ topology is contained in the closure in
L2). �

Note that the ‘Hodge decomposition’ (L6.34) is a useful way to encapsulate the
consequences of ellipticity for a complex. It shows in particular that (L6.29) can
be seen in the stronger form that

(L6.35) null(∆i) −→ null(Pi)/Pi−1C
∞(X;Ei−1) is an isomorphism

which is the Hodge theorem.
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