
CHAPTER 4

Conormality at a submanifold

Lecture 4: 20 September, 2005

Last time I defined the space of conormal distributions at the zero section of
a real vector bundle and checked the basic properties. These include invariance
under bundle transformations and diffeomorphism of the base. The next step is
to transfer the defintion to a general embedded submanifold. As noted at the end
of last lecture, to do this we need a more general invariance result. To make a
change of pace I will do this locally rather than globally. There is no particularly
compelling reason for this, I just felt it was time to make sure we could ‘see’ what
is happening.

Thus consider a trivial vector bundle over R
n, W = R

n × R
k. We have not

really defined the conormal distibutions with respect to R
n × {0} ‘globally’ on R

n,
although we could easily do so – and indeed I will need them later. Let me instead
consider the space of conormal distributions on R

n ×R
k with compact support and

in fact supported in some bounded open set N ⊂ R
n × R

k which meets R
n × {0}

(so that we are not just looking at smooth functions). Since N is bounded we can
choose a large constant so that N ⊂ [−π, π]n × R

k and then we may think of it as
a subset of a trivial bundle over the torus

(L4.1) N ⊂ T
n × R

n, T
n = R

n/2πZ
n.

So, by definition the conormal distributions supported in N are just the fibre inverse
Fourier transforms of classical symbols, the elements of
(L4.2)

ImS (W,OW ) = F−1
fib (C∞(W ′; Ωfib(W ′) ⊗ N−m′)) , W = T

n ×R
n, m′ = m−

n

4
+

k

4
,

to which we simply add the condition that

(L4.3) supp(u) ⊂ N.

The main invariance result I will prove is

Proposition 8. If F : N ′ −→ N is a diffeomorphism, between open subsets of
R

n × R
k both satisfying (L4.1), and which satisfies

(L4.4)

{

F (p) = p

F∗ = Id on N ′
p(R

n × {0})
∀ p ∈ N ′ ∩ (Rn × {0})

then

(L4.5) u ∈ ImS (W,OW ) and supp(u) ⋐ N =⇒ F ∗u ∈ ImS (W,OW ).
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46 4. CONORMALITY AT A SUBMANIFOLD

Proof. As discussed last time, we will use Moser’s method which depends on
the construction of a 1-parameter family of such diffeomorphism.

Lemma 11. If F : N ′ −→ N is as in Proposition 8 then for some open N ′′ ⊂ N ′

with N ′′ ∩ (Rn × {0}) = N ′ ∩ (Rn × {0}) there is a smooth 1-parameter family of
maps Fs : N ′′ −→ R

n ×R
k, s ∈ [0, 1], which are diffeomorphisms onto their ranges

and satisfy F0 = Id, F1 = F
∣

∣

N ′′
and (L4.4) for each t.

Proof. The assumptions on the diffeomorphism F imply that

(L4.6) F (x, z) = (x +
∑

zj

Gj(x, z), z +
∑

jk

zjzkHjk(x, z)), (x, z) ∈ N ′.

Indeed, the first restriction on the components realizes the condition F (x, 0) = (x, 0)
and the second correspond to the requirement that the Jacobian ∂z∂zF (x, 0) = Id .
Then we can simply set

(L4.7) Fs(x, z) = (X(s), Z(s)), Xi(s) = xi + s
∑

zj

Gij(x, z),

Zp(s) = zp + s
∑

jk

zjzkHpjk(x, z)), (x, z) ∈ N ′′ = N ′ ∩ |z| < ǫ

where choosing ǫ > 0 small enough ensures, by the inverse function theorem, that
all the maps are diffeomorphisms onto their images. �

Recall that for any smooth function (and hence by continuity also for distribu-
tions) the chain rule becomes

(L4.8)
d

ds
F ∗

s vs = F ∗
s (

d

ds
vs + V (s)vs)

for a smooth vector field Vs. Indeed the vector field is just

(L4.9)
dXi

ds
∂Xi

+
dZp

ds
∂Zp

where the coefficients should be treated as functions of (X(s), Z(s)). It follows from
(L4.7) that

(L4.10) V (s) =
∑

k

ZkVk, Vk smooth and tangent to Z = 0,

which is to say the zero section.
To prove the proposition, consider u as in (L4.5). We will choose a curve of

distributions supported very close to N ′′ ∩ (Rn × {0}) and such that

(L4.11)
d

ds
u(s) + V (s)u(s) ∈ C∞, u(1) = u.

Recall that we have shown above that the action of any smooth vector field tan-
gent to the zero section leaves the order of a conormal distribution unchanged and
multiplying by any Zk lowers it. Thus

(L4.12) V (s) : {u ∈ ImS (W,OW ); supp(u) ⋐ Fs(N
′′)} −→ Im−1

S (W,OW ).

So in fact it is easy to solve (L4.11) iteratively. Just make a first choice of u0 = u
which is constant. This means that we have the initial step for the inductive
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hypothesis

(L4.13)
d

ds
u(N)(s) + V (s)u(N)(s) = fN+1(s) ∈ Im−N−1

S (W,OW ),

u(N)(s) = u0(s) + · · · + uN (s), uj(1) = 0, j > 1.

Supposing we have solved it to level N, setting

(L4.14) uN+1(s) =

∫ 1

s

fN+1(s
′)ds′ =⇒

d

ds
uN+1(s) = −fN+1s + fN+2

gives the inductive hypothesis at the next level. Taking an asymptotic sum

(L4.15) u(s) ∼
∑

j

uj(s) gives (L4.11).

Notice that I have not bothered talking about the supports here, but they can be
arranged to be arbitrarily close to the compact set supp(u)∩ (Rn ×{0}) by making
additional smooth errors.

This completes the proof of Proposition 8 since d
ds

F ∗
s u(s) is smooth in all

variables and hence

(L4.16) F ∗u = F ∗
1 u(1) = F ∗

0 u(0) + v = u(0) + v ∈ ImS (W,OW ) since v ∈ C∞
c (N ′′).

�

We can easily apply this local result to obtain a more global one along the lines
that I mentioned last time.

Proposition 9. Let W be a real vector bundle over a compact manifold Y and
suppose that f : N −→ N ′ is a diffeomorphism between open neighbourhoods of the
zero section 0W with the properties (L3.53) and (L3.54) (so it fixes each point of
the zero section and has differential projecting to the identity on the normal space
to the zero section at each point) then

(L4.17) u ∈ Im
S (W, 0W ) with supp(u) ⋐ N ′ =⇒ f∗u − u ∈ Im−1

S (W, 0W ).

and in particular

(L4.18) σm(f∗u) = σm(u) ∈ C∞(SW ′;N−m′ ⊗ ΩW ′), m′ = m −
d

4
+

n

4
.

Proof. Each point of Y has a neighbourhood in Y over which W is trivial and
Proposition 8. Thus, taking a partition of unity φj of a neighbourhood of 0W = Y
in W with each element supported in such a set we may apply Proposition 8 to f
and φju on each set. Since u −

∑

j

(φju) is smooth and f∗(φju) − φju is conormal,

and of order m − 1, for each j we deduce the global form (L4.17).
The invariance of the symbol, (L4.18), follows immediately from (L4.17). �

This result in turn allows us to define the space Im(X,Y ) of conormal distri-
butions associated with (only singular at) an embedded closed submanifold of a
compact manifold. To do so we need an appropriate form of

Theorem 1. [Collar Neighbhourhood Theorem] Let Y ⊂ X be a closed embed-
ded submanifold of a compact manifold (so Y is a closed subset and for each point
y ∈ Y there exist local coordinates on X based at y in which Y meets the coordinate
patch in the set given by the vanishing of the last d − k coordinates) then there



48 4. CONORMALITY AT A SUBMANIFOLD

are an open neighbourhood D of Y in X and D′ of the zero section of the normal
bundle, NY, to Y in X and a diffeomorphism f : D −→ D′ such that

(L4.19)
f
∣

∣

Y
is the natural identification of Y with 0NY

f∗ induces the natural identification of NyY with NyY ∀ y ∈ Y.

Perhaps in this form the theorem requires a little more explanation. First the
normal bundle has, as I said early, fibre at a point y ∈ Y the quotient

(L4.20) NyY = TyX/YyY.

If X is a given a Riemannian structure then we may identify this quotient witht he
metric normal space and write

(L4.21) TyX = TyY ⊕ NyY

but in general there is no natural way of embedding NY as a subbundle of TY X.
However, once we have a smooth map f : D −→ D′ which maps a neighbourhood
of Y in X to a neighbourhood of the zero section of NY, and maps each y ∈ Y to
its image point in 0NY then

f∗ : TyX −→ Ty(NY ).

Since we are assuming that f maps Y onto 0NY as ‘the identity’ it must map TyY
to Yy(0NY ) = TyY as the identity and hence projects to a map on the quotients

(L4.22) f∗ : NyY −→ Ty(NY )/Ty0NY = NyY

where we can identify the normal space to the zero section unambiguously with the
fibre for any vector bundle. Thus the second condition is that this map should also
be the identity.

Proof. I will not give a complete proof of the Collar Neighbourhood Theorem
in this form. Suffice it to say that the standard approach is to use geodesic flow
map for a Riemann metric on X. Using the embedding of NY in TY X coming
from (L4.21) one can check that the restriction of the exponential map to a small
neighbourhood of the zero section of the normal bundle gives a diffeomorphism onto
a neighbourhood of Y and the inverse of this satisfies the two conditions. �

For our application, the uniqueness part is also important. Namely given two
local diffeomorphism fi, i = 1, 2, both as in the theorem, the composite f = f2◦f−1

1

is a diffeomorphism of one neighbourhood of the zero section of NY to another and
it necessarily satisfies both (L3.53) and (L3.54). This means that the definition we
have been working towards makes good sense.

Definition 3. If Y ⊂ X is a closed embedded submanifold of a compact
manofold then

(L4.23) Im(X,Y ) =
{

u ∈ C−∞(X);u = u1 + u2, u2 ∈ C∞(X) and

u1 = f∗v, v ∈ Im
S (NY, 0NY ), supp(v) ⊂ D′ for some diffeomorphism as in (L4.19)

}

.

Now, many properties of the Im(X,Y ) now follow directly from the properties
already stablished for the Im

S (W, 0W ). First the inclusion for these spaces gives
immediately

(L4.24) Im−1(X,Y ) ⊂ Im(X,Y ).
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This inclusion is important because it is captured by the symbol. Since this is
rather important in the sequel, let me state this formally.

Lemma 12. The symbol map on Im(NY, 0NY ) induces a symbol map on Im(X,Y )
and this gives a short exact sequence

(L4.25) Im−1(X,Y )
�

�

//Im(X,Y )
σm

//C∞(SN∗Y ;N−m′ ⊗ Ωfib),

m′ = m −
d

4
+

n

4
, d = dimY, n = codim Y.

So what are the important properties of these distributions?

(1) Each element of Im(X,Y ) is smooth outside Y and

(L4.26)
⋂

k

Im−k(X,Y ) = C∞(X).

(2) Invariance:- If F : X ′ −→ X is a diffeomorphism then

(L4.27) F ∗ : Im(X,Y ) −→ Im(X ′, F−1(Y )), σm(F ∗u) = F ∗σm(u)

where you need to check the sense in which F ∗ induces an isomorphism
of the conormal bundles N∗Y in X and N∗(F−1(Y )) in X ′.

(3) Action of differential operators. If P ∈ Diffk(X) (which I have not really
defined) then

(L4.28) P : Im(X,Y ) −→ Im+k(X,Y ), σm+k(Pu) = σk(P )
∣

∣

N∗Y
σm(u).

(4) Asymptotic completeness. If uk ∈ Im−k(X,Y ) then there exists u ∈
Im(X,Y ) such that

(L4.29) u −
∑

k<N

uk ∈ Im−N (X,Y ), ∀ N.

4+. Addenda to Lecture 4

4+.1. Listing the properties. Let me briefly summarize, again, the proper-
ties of the conormal distributions as I have defined them above and outline proofs.
For the momemnt we only have ‘generalized functions’. For each m ∈ C (I have
mostly been treating m as real but this is not usd anywhere) and any embedded
closed submanifold of a compact manifold, Y ⊂ X, we have defined

(4+.30) Im(X,Y ) ⊂ C−∞(X) = (C∞(X; Ω))′.

This is Definition 3 in terms of conormal distributions with respect to the zero
section of a vector bundle (in this case the normal bundle to Y in X). The definition
in that case is (L3.50) as the inverse fibre Fourier transform of ‘symbols’ on the
radial compactification of the dual bundle. It follows from the inclusion for the
symbol spaces that if k ∈ N then

(4+.31) Im−k(X,Y ) ⊂ Im(X,Y ),
⋂

k

Im−k(X,Y ) = C∞(X).

Asymptpotic completeness of the symbol spaces shows that if uk ∈ Im−k(X,Y )
then there exists u ∈ Im(X,Y ) such that

(4+.32) u −
∑

k≤N

uk ∈ Im−N (X,Y ) ∀ N.
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The main thing that distinguishes conormal distributions is that their leading
singularities are describeable by the principal symbol map which gives a short exact
sequence for each m
(4+.33)

Im−1(X,Y ) −→ Im(X,Y )
σm−→ C∞(SN∗Y ;Nm′⊗Ωfib), m′ = m−

1

4
dim X+

1

4
dim X,

N−m is the bundle of functions homogeneous of degree m′ on N∗Y (the normal
bundle to Y in X) and Ωfib is the bundle of densities on the fibres of N∗Y.

Exercise 16. Show that the density bundle on X, restricted to Y, can be
decomposed

(4+.34) ΩY X = ΩY ⊗ ΩfibNY

where ΩfibNY is the ‘normal density bundle to Y, so is the ‘absolute value’ of the
maximal exterior power of the conormal bundle to Y. (The notation is to indicate
that this is the usual normal bundle on the fibres of NY made into a bundle over
Y.) So if 0 < µ ∈ C∞(Y ; ΩNY ) is a positive smooth ‘normal density’ on Y (and
such always exists) then

(4+.35) uµ : C∞(X; ΩX) ∋ ν 7−→

∫

Y

(ν/µ) ∈ C (or R)

is a well-defined distibution. Show that this ‘delta’ section is an element of I−
1

4
codim Y (X,Y )

and compute its symbol (in terms of µ.)

For any differential operator P ∈ Diffq(X) (so P : C∞(X) −→ C∞(X) is a
continuous linear operator which is local) its symbol σq(P ) is a smooth function on
T ∗X which is a homogeneous polynomial of degree q on the fibres (defined by the
condition

(4+.36) P (eitf(x)v(x)) = eitf(x)
(

σq(tdf)v(x) + O(tq−1)
)

∀ f, v ∈ C∞(X), t ∈ R)

(4+.37) P : Im(X,Y ) −→ Im+q(X,Y ), σm+q(Pu) = σq(P )σm(u).

In particular the Im(X,Y ) are C∞(X) modules and they are invariant under dif-
feomorphisms, so if f : O −→ O′ is a diffeomorphism between open subsets of X,
Y and Y ′ are embedded submanifolds of X and f(O ∩ Y ) = O′ ∩ Y ′ then
(4+.38)

f∗ : {u ∈ Im(X,Y ′); supp(u) ⊂ O′} −→ Im(X,Y, σm(f∗u) = (f∗)∗σm(u)

where f∗ : N∗
O;∩Y ;Y

′ −→ N∗Y is the induced map.

Exercise 17. Show that any element of Im(X,Y ) which has support in Y is
of the form Puµ where uµ is as in (4+.35) and P ∈ Diffq(X) for some q. What
values of m can occur this way?

4+.2. Poincaré forms. Although I have only defined conormal distributions,
there is no problem in defining conormal sections of any complex vector bundle
E over X (and I will do this next time) giving a space Im(X,Y ;E) with similar
properties. In fact I will discuss this in more detail next time. Informally an element
of C−∞(X;E) is given in terms of any local trivialization of E by a sum over the
local basis with distributional coefficients. If these coefficients are in Im(X,Y )
then the distributional section is in Im(X,Y ;E). This tensor-product definition
can readily be made rigourous.
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Anyway, suppose we have made sense of this already. The ‘simplest’ sort of
conormal distributions are again the ‘Dirac delta sections’. One particularly nice
example is given by the Poincaré duals of embedded submanifolds. Since this is an
opportunity to discuss a little homology, let me do so.

First recall deRham theory in which the spaces of sections of the exterior bun-
dles (exterior powers of the cotangent bundle) over a manifold X are the chain
spaces for a (co)homology theory. Namely d gives a complex of differential opera-
tors, d ∈ Diff1(X; ΛkX,Λk+1X), d2 = 0

(4+.39) . . .
d

//C∞(X; Λk−1)
d

//C∞(X; Λk)
d

//C∞(X; Λk+1)
d

// . . . .

The deRham cohomology groups

(4+.40) Hk
dR(X) = {u ∈ C∞(X; Λk); du = 0}/dC∞(X; Λk−1)

are naturally isomorphic (for a compact manifold) to the other ‘obvious’ cohomology
groups – singular, smooth singular or Čech (and as I will discuss later, Hodge).

There are other forms of the deRham groups too. In particular the ‘distribu-
tional deRham cohomology’ is canonically isomorphic to the smooth

(4+.41) {u ∈ C−∞(X; Λk); du = 0}/dC−∞(X; Λk−1) ≡ Hk
dR(X).

Here there is an obvious map from smooth deRham to distributional deRham and
this is always an isomorphism. That is, any element of C−∞(X; Λk) which satisfies
du = 0 is of the form dv + u′ with v ∈ C−∞(X; Λk−1) and u′ ∈ C∞(X; Λk) (so of
course du = 0). This by the way is a consequence of the Hodge theorem proved
later (but can be proved more crudely but more directly if you want).

Why care about distributional deRham at all? One reason is the existence of
Poincaré dual forms (also sometimes called Leray forms).

Proposition 10. If Y ⊂ X is a closed embedded submanifold with an oriented
normal bundle then the form given in local coordinates near any point of Y, in which
Y = {xd+1 = . . . = xn = 0} locally with the correct orientation, by

(4+.42) pY = δ(xd+1) · · · δ(xn)dxd+1 ∧ . . . ∧ dxn ∈ I−(X,Y ; Λn−d), dim Y = d,

is independent of choices, closed and fixes the Poincaré dual class to Y in Hn−d(X).




