
CHAPTER 3

Conormality at the zero section

Lecture 3: 15 September, 2005

Next we turn to the case of a real vector bundle W −→ Y over a compact
manifold Y and define the space of conormal distributions on the total space W of
the vector bundle with respect to (i.e. only singular at) the zero section 0W . The
latter is a compact embedded submanifold canonically isomorphic to Y.

Before I do this, I want to point out some further properties in the case of the
conormal distributions with respect to the origin of a vector space. In particular
there is another important invariance property, the proof of which I want to go
through. I will also indicate in a simple example how these spaces can be used.

First, these distibutions can be integrated

(L3.1)

∫

Rn

: Im
S (Rn, {0}) −→ C.

The integral is well-defined on both distributions of compact support and on S(Rn)
and we know, using (L2.26), that any u ∈ Im

S (Rn, {0}) can be written as a sum
u = χu + (1 − χ)u of one term of each type. The value of integral is independent
of the particular splitting since the definitions agree on the intersection, namely
C∞

c (Rn). In terms of the Fourier transform a = F(u) the integral can be written
explictly:-

(L3.2)

∫

Rn

u(x)dx = a(0).

As we shall see this rather trivial observation is decidedly useful later.
For a general vector space we will only get a well-defined map analogous to

(L3.1) if we have chosen a volume form, which could be the Lebesgue form for
some identification with Rn. I will discuss densities, a better way to do this, later.

So, returning to the case of Rn recall that we have already shown that

(L3.3) zαDβ
z : Im

S (Rn, {0}) −→ I
m+|β|−|α|
S (Rn, {0}).

This follows directly from the properties of the Fourier transform. It is also clear
that convolution behaves well

(L3.4) Im
S (Rn, {0}) ∗ Im′

S (Rn, {0}) ⊂ I
m+m′+ n

4

S (Rn, {0}).

Indeed, the Fourier transform of the convolution is the product of the Fourier
transforms so
(L3.5)

û ∗ v = ûv̂ ∈ ρ−m−m′−n
2 C∞(Rn) if û ∈ ρ−m−n

4 C∞(Rn) and v̂ ∈ ρ−m′−n
4 C∞(Rn).
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36 3. CONORMALITY AT THE ZERO SECTION

It is also the case that Im
S (Rn, {0}) is a S(Rn)-module, that is multiplication

by a Schwartz function maps this space into itself

(L3.6) S(Rn) · Im
S (Rn, {0}) ⊂ Im

S (Rn, {0}).

Perhaps the obvious way to approach this is the opposite to (L3.5). That is, take
the Fourier tranform and then show that

(L3.7) S(Rn) ∗ ρ−mC∞(Rn) ⊂ ρ−mC∞(Rn).

This is not so hard, and may well be informative. However I will prove it in a
slightly different way, using an asymptotic completeness argument.

So we wish to show that if φ ∈ S(Rn) and u ∈ Im
S (Rn, {0}) then φu ∈

Im
S (Rn, {0}). We can simplify this a little by choosing a cutoff function χ ∈ C∞

c (Rn)
which is identically equal to 1 near the origin and splitting u = χu+(1−χ)u into a
compactly supported term and a term in S(Rn); then we can ignore the latter since
it is in an algebra contained in Im

S (Rn, {0}). Now, we can similarly split φ into a
part supported near, and a part supported away from, the origin. If the latter is
supported in the complement of the support of u (now compact) then the product
is zero. Thus we are reduced to the special case

(L3.8) C∞
c (Rn) · Im

c (Rn, {0}) ⊂ Im
c (Rn, {0})

where the suffix ‘c’ indicates that supports are compact, as opposed to the Schwartz
property at infinity.

Now, let us replace φ by its Taylor series expansion, to high order and with
remainder, about the origin

(L3.9) φ(z) =
∑

|α|≤N

cαzα +
∑

|α|=N+1

φα(z)zα, φα(z) ∈ C∞(Rn).

If you recall, this is proved by radial integration. Now, multiplying φ(z) by another
cutoff χ ∈ C∞

c (Rn) which is equal to 1 in a neighbourhood of the support of u (so
χu = u) we find that

(L3.10) φ(z)u =
∑

|α|≤N

cαzαu +
∑

|α|=N+1

φ(N)
α (z)zαu, φ(N)

α ∈ C∞
c (Rn).

The advantage of doing this is that we know about all the terms in the first sum,

namely zαu ∈ I
m−|α|
S (Rn, {0}). Similarly the remainder terms are of the form

(L3.11)
∑

|α|=N+1

φ(N)
α (z)u(N)

α , u(N)
α ∈ Im−N−1

c (Rn, 0).

On the other hand from the estimates I did last time, we know that if N > m+n+p
then

(L3.12) u(N)
α ∈ Cp

c (Rn), ∀ |α| = N + 1.

After multiplying by a smooth function of compact support this remains true. Note
that in the first sum in (L3.10) the term of order α is fixed once N ≥ |α|. Thus, by
asymptotic completeness we can find one element v ∈ Im

S (Rn, {0}) such that

(L3.13) v −
∑

|α|≤N

cαzαu ∈ Im−N−1
S (Rn, {0}) ∀ N.
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Combining this with (L3.10) and (L3.11), with the same estimate on the regularity
at the origin for the difference in (L3.13) we conclude that

(L3.14) φu − v ∈ S(Rn) + Cp
c (Rn) ∀ p

and hence φu − v ∈ S(Rn) which proves (L3.8) and hence (L3.6).
Let me make an immediate application of this to a ‘baby’ problem which is

intended to illustrate how we can use these conormal distributions. Observe that
the constants are in the space C∞(Rn) so

(L3.15) δ ∈ I
−n

4

S (Rn, {0})

just to make you think of an example.
Now, combining (L3.3) and (L3.6) we see that if P is a differential operator

with Schwartz coefficients

(L3.16) P =
∑

|α|≤k

pα(z)Dα
z , pα(z) ∈ S(Rn)

then

(L3.17) P : Im
S (Rn, {0}) −→ Im+k

S (Rn, {0}).

The project is to try to partially invert this map by showing that

(L3.18) Given f ∈ Im
S (Rn, {0}) ∃ u ∈ Im−k

S (Rn, {0})

s.t. Pu = f + g, g ∈ S(Rn) provided P is elliptic at 0

Of course I have not said what the condition of ellipticity means, but we will find
out in the proof. We only ‘partially’ solve the problem in the sense that there is a
Schwartz error, but at least we can remove the singularity.

As in the discussion above, we do not get to our goal immediately, but we
proceed by steps. Suppose u0 ∈ Im−k(Rn, {0}) then we know from (L3.17) that
Pu ∈ Im(Rn, {0}) but we can get more information about the ‘leading singularity’.
Namely, the part of the sum in (L3.16) over |α| < k maps u into Im−1(Rn, {0}).
Similarly, any part of the coefficients which vanishes at the origin has a factor of
zj in it and so, even after k differentiations, this part maps into Im−1(Rn, {0}) as
well. Thus

(L3.19) Pu0 =
∑

|α|=k

pα(0)Dα
z u0 + f ′, f ′ ∈ Im−1(Rn, {0}).

Taking the Fourier transform of this ‘leading term’ we get

(L3.20) pk(0, ξ)û0(ξ) ∈ ρ−m−k+ n
4 C∞(Rn), pk(0, ξ) =

∑

|α|=k

paα(0)ξα.

So we want to solve

(L3.21) pk(0, ξ)û0(ξ) = f̂(ξ)

just as though we were solving a constant coefficient operator. Of course in general
this does not have a smooth solution because of the zeros of pk(0, ξ). We say that

(L3.22) P is elliptic at 0 if pk(0, ξ) 6= 0 in ξ ∈ Rn \ {0}.
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Even assuming this we cannot quite solve (L3.21) since (unless we are in the com-
pletely trivial case where k = 0) pk(0, ξ) does vanish at the origin. However we can
choose

(L3.23) û0(ξ) =
(1 − χ(ξ))f̂(ξ)

pk(0, ξ)
∈ ρ−m−k+ n

4 C∞(Rn).

where χ ∈ C∞
c (Rn) is equal to 1 near zero. Since pk is homogeneous of degree k

(and non-vanishing) (1−χ)/pk ∈ ρkC∞(Rn) from which (L3.23) follows. Moreover
then we get

(L3.24) pk(0, ξ)û0 = f̂ + g, g ∈ S(Rn).

Inserting this in (L3.19) we have made progress, namely we have shown that

(L3.25) Given f ∈ Im(Rn, {0}) ∃ u0 ∈ Im−k(Rn, {0}) s.t.

Pu = f + f ′′, f ′′ ∈ Im−1(Rn, {0})

provided P satisfies the ellipticity condition (L3.22).
Now we can proceed by induction. Namely the order m in (L3.25) is arbitrary

and the inductive statement is that we have constructed

(L3.26) uj ∈ Im−k−j(Rn, {0}), j = 0, . . . , l

s.t. P (

l∑

j=0

uj) = f − fl+1 where fl+1 ∈ Im−l−1(Rn, {0}).

Then we use (L3.25) with m replaced by m − l − 1 and f replaced by fl+1 to

construct ul+1 and then define fl+2 = fl+1−Pul+1 ∈ Im−l−2
S (Rn, {0}). This proves

the inductive statement for all l.
Finally we use asymtotic completeness, which shows that there exists one fixed

u ∈ Im−k
S (Rn, {0}) such that

(L3.27) u −
l∑

j=0

uj ∈ Im−k−l−1
S (Rn, {0}) ∀ l

and from this (L3.18) follows.
This argument is a model for quite a few arguments below.
Now, what I really want to do today is to define conormal distributions on a

vector bundle. What we need here is the invariance under linear transformations,
which we have already checked. However we also want to be able to write things
in an invariant form and to do so it is convenient to use the language of densities.

Recall that given a vector space over the reals there are many ‘associated’
vector spaces. The dual W ′, tensor powers and in particular exterior powers –
the totally antisymmetric parts of the tensor powers. If dimW = n then the
maximal (non-trivial) exterior power is ΛnW. Its elements are n-multilinear and
totally antisymmetric forms

µ : (W ′)×n = W ′ × W ′ × . . . W ′ −→ R

where multilinearity is linearity in each of the n variables separately and antisym-
metry reduces to oddness under the exchange of any neighbouring pair of variables.
This is a 1-dimensional vector space and by standard linear algebra its dual is
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canonically isomorphic to Λn(W ′). That is, µ can be identified (canonically so we
use the same name) with a linear map

(L3.28) µ : Λn(W ′) −→ R.

The fundamental property of these forms is that on Rn, for the action of GL(n, R),

(L3.29) (G∗µ)(w1, . . . , wn) = µ(Gw1, . . . , Gwn) = detG · µ(w1, . . . , wn)

in terms of (3). Of course it has to be a multiple since the space is 1-dimensional.
Now, in place of (L3.28) we can consider more general maps

(L3.30)
ΩtW = {ν : Λn(W ′) \ {0} −→ R, ν(cv) = |c|tν(v) ∀ c ∈ R \ {0}, v ∈ Λn(W ′)}.

Instead of being linear these are absolutely homogeneous of degree t. If t = 0 we just
have constants but in all cases, for each t ∈ R, these are linear spaces of dimension
1. In the special case t = 1 we just use the notation ΩW. Observe that if µ ∈ ΛnW
then |µ| ∈ ΩW and any element is equal to ±|µ| for some such µ. Thus the only
real difference between ΛnW and ΩW is to do with orientation. Anyway, it follows
from this observation that in the case of Rn,

(L3.31) G∗ν = |det G|ν

in terms of the same action of GL(n, R) on ΛnRn. This is the reason densities are
important, because they transform in such a way that integration becomes invariant
(for the moment under linear transformations).

Let us apply this discussion directly to the Fourier transform. For Schwartz
functions on Rn

(L3.32) Ĝ∗u(ζ) =

∫
e−iz·ζu(Gz)dz, G ∈ GL(n, R).

Changing the variable of integration from z to y = Gz we ‘know’ (from integration
theory) that

(L3.33) Ĝ∗u(ζ) =

∫
e−iy·(G−1)tζu(y)dy|det G|−1

where I have used the definition of the transpose to write G−1y · ζ = y · (G−1)tζ.
Thus

(L3.34) Ĝ∗u(ζ) = |det G|−1.((G−1)t)∗û

The action via the transpose of the inverse is exactly what we expect on the dual
space but there is an extra factor of the determinant, admittedly just a constant
but annoying nevertheless! We can remove this and get complete invariance by
redefining the Fourier transform as a density

(L3.35) Fu(ζ) = û(ζ)|dζ| ∈ S(Rn; Ω).

Now, from the discussion above this transforms in precisely the correct way so that
we have a map which is independent of the choice of linear coordiantes

(L3.36) F : S(W ) −→ S(W ′; ΩW ′)

where the image space is just the space of Schwartz functions valued in ΩW ′ (which
is just a 1-dimensional vector space.)

As a consequence of this we can now identify, independent of the choice of basis

(L3.37) Im(W,OW ) = F−1
(
ρ−m−n

4 C∞(W ′; ΩW ′)
)
.
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Then

(L3.38) Im−1(W,OW ) //Im(W,OW )
σm

//C∞(SW ′;N−m−n
4
⊗ ΩW ′)

is a short exact sequence.
One advantage of this definition, or the coordinate version for Rn, is that we

can immediately see what it means for such a distribution to ‘depend smoothly on
parameters.’ Said another way, these spaces come with topologies, since the Fourier
transform is used as an isomorphism, we can use the topology (uniform convergence
of all derivatives on compact sets) on C∞(W ′) to give a toplogy on

ρ−mC∞(W ′; ΩW ′) = C∞(W ′;N−m ⊗ ΩW ′)

for any m and hence we have a topology on Im(W, 0W ).
So, if Y is a compact manifold, what is C∞(Y ; Im(W,OW )) for a vector space

W? It is a space of distributions on Y ×W which is identified by Fourier transform
with C∞(Y ; ρ−m−n

4 C∞(W ′; ΩW ′)). Again the definition of the topology just given
means that we remove the weight factor and take a basis of the vector space and
so identify this with C∞(Y ; C∞(Sn,1)). Now, it is a standard analytic fact that (for
any manifolds)

(L3.39) C∞(Y ; C∞(Sn,1)) = C∞(Y × Sn,1) = C∞(Y × Sn)
∣∣
Y ×Sn,1

is just the space of smooth functions on the product manifold, itself a compact
manifold with boundary. Or, backing up a little with the identifications it is the
same thing as

(L3.40) ρ−m−n
4 C∞(Y × W ′; ΩW ′).

For reasons that might seem trivial compared to the resulting annoyance, we
identify this space, as a space of distributions on Y × W with

(L3.41) Im
S (Y × W,Y × {0}) = F−1

(
ρ−m+ d

4
−n

4 C∞(Y × W ′; ΩW ′)
)

,

d = dimY, n = dimW.

Here F is to be interpreted as in (L3.36).
Now, suppose that rather than a product with a vector space, W is a smooth

real vector bundle over the compact manifold Y. We want to define Im
S (W,OW ) so

that it reduces to (L3.41) in case the bundle is trivial.
Let me start with the radial compactification of the real vector bundle W. I

will, for just this once, take the ‘high road’ of associated bundles, but then give a
transition-map description.

A real vector bundle over Y is a manifold W with a smooth surjective map
π : W −→ Y which is a submersion (has surjective differential at each point),
is such that, for each y ∈ Y, π−1(y) = Wy has a linear structure (over R) and
which is also locally trivial in the sense that Y has a covering by open sets U such
that for each U ∈ U , there is a diffeomorphism TU : π−1(U) −→ U × Rn giving a
commutative diagramme with the projections

(L3.42) π−1(U)
FU

//

π

##FF
FF

FF
FF

F
U × Rn

πU

{{xxxxxxxxx

U
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and which is linear on the fibres.
From a vector bundle we can construct a principal bundle. Namely for each

y ∈ Y set

(L3.43) Py = {T : Wy −→ Rn a linear isomorphism.}

This is a principal GL(n, R)-space since if T ∈ Py then GT ∈ Py for each G ∈
GL(n, R) and this action of GL(n, R) is simple and transitive. Putting these spaces
together set

(L3.44) P =
⋃

y∈Y Py

πP

��

Y.

The local trivializations (L3.42) of W provide sections over the sets U ∈ U of P
giving corresponding maps

(L3.45) π−1
P (U) //

π

""FF
FF

FF
FF

F
U × GL(n, R)

πU

yysssssssssss

U

which fix a consistent C∞ structure on P.
The vector bundle W can be recovered from the principal bundle P as

(L3.46) W = P × Rn/GL(n, R), G(p, v) = (Gp,Gv).

In this way we can easily define the radial compactification of W by taking the
extension of the GL(n, R) action to Sn,1 and so setting

(L3.47) W = P × Sn,1/GL(n, R), G(p, q) = (Gp,Gq), W →֒ W

embeds W as the interior of a compact manifold with boundary. Thus we have
defined the corresponding ‘symbol spaces’

(L3.48) ρ−mC∞(W ; Ωfib), Ωfib = ΩW.

where ρ is as before a defining function for the boundary (which always exists
globally).

Thinking in terms of transition maps for local trivializations suppose that Ui, Uj

are elements of U (and a finite number of its elements must cover by the compactness
of Y ) the two maps (L3.42) combine over Uij = Ui∩Uj , assuming this is non-empty,
to give a smooth map

(L3.49) hij : Uij −→ GL(n, R), hij(y) = FUi
◦ F−1

Uj
.

Then the vector bundle can be thought of as the union of the Ui × Rn with these
identifications over Uij . The fact that the spaces (L3.48) are well defined reduces
to the GL(n, R)-invariance of the radial compactification, which of course we used
in the ‘high road’ definition above.

Now we can extend the definition (L3.41) from the product case to the general
bundle case by setting

(L3.50) Im
S (W, 0W ) = F−1

fib

(
ρ−m+ d

4
−n

4 C∞(W ′; Ωfib)
)

,

d = dimY, n = dimW.
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I am being a little casual about the fibrewise Fourier transform but we can see that
it all makes sense by the local trivialization approach. In fact the global behaviour
in the base is not a big issue. I have done it this way so that the bookkeeping is
fairly straightforward.

What bookkeeping? Well, the important property here, that we used repeatedly
in the construction at the beginning of the lecture, is the short exact sequence which
became (L3.38) in the invariant notation for a vector space. Now we get

(L3.51) Im−1
S (W,OW ) //Im

S (W,OW )
σm

//C∞(SW ′;N−m′ ⊗ ΩW ′) ,

m′ = m −
d

4
+

n

4
, d = dim Y, n = dim Wy

is exact.

Exercise 14. Check that you do understand what (L3.51) means and how to
prove it. In a nutshell, the space SW ′ is the boundary of the radial compactifi-
cation of W ′ and the surjectivity of the second map corresponds to the fact that

every element of ρ−m+ d
4
−n

4 C∞(Y × W ′; Ωfib) corresponds to a (unique) conormal
distribution by (L3.50). The injectivity on the right is almost by definition and
the exactness in the middle is precisely the fact that an element of C∞(W ′) which
vanishes on SW ′ is an element of ρC∞(W ′) and conversely.

Finally let me review what we need for the next step, to define Im(X,Y ) where
Y is a compact embedded submanifold of a compact manifold X using the Collar
Neighbourhood theorem. From the definition above it is immediate, or rather built
into the definition that if g : W −→ W is a bundle isomorphism then

(L3.52) g∗ : Im(W, 0W ) −→ Im(W, 0W ).

This is true whether g projects to the identity on the base (the usual meaning of a
bundle isomorphism) or projects to a non-trivial diffeomorphism of the base.

The point is that this is by no means strong enough for what we want. Indeed
we will need to consider a diffeomorphism between neighbourhoods of the zero
section, N and N ′, of W but which need not preserve the fibres and even if it
does, need not be linear. Of course it will be assumed to map the zero section into
itself, otherwise (L3.52) could not possibly hold. Moreover, because of the known
invariance under bundle isomorphisms we can assume a bit more. First we shall
require that

(L3.53) g : 0W −→ 0W is the identity.

Now, this means that at each point y ∈ 0W (which is just Y ) the tangent space to
0W is mapped into itself as the identity too. The quotient

(L3.54) TyW/Ty0W = TyWy = Wy

is naturally identified with the fibre of W through the point. So it makes sense to
add a second condition to (L3.53) on the differential (i.e. the Jacobian) of g at each
point of 0W :

(L3.55) g∗ : Wy −→ Wy is the identity.

Lemma 10. Any diffeomorphism of a neighbourhood of 0W onto its image in

W which maps 0W onto itself pointwise can be factorized as g ·h where h is a bundle

isomorphism and g satisfies (L3.53) and (L3.55).



3+. ADDENDA TO LECTURE 3 43

So, we want to show that (L3.52) holds for g as in (L3.53), (L3.55). Of course
it only makes sense to apply g∗ to functions or distributions with support in the
image set N ′ but this is no problem since outside any given neighbourhood of 0W

we already know that our conormal distributions are smooth.
Let me check what (L3.53) and (L3.55) mean in local coordinates. If we take

a local trivialization of W over some open set U ⊂ Y and use coordinates y in U
and fibre coordinates z in WU = U × Rn then

(L3.56) g(y, z) = (y +
∑

j

zjmj(y, z), z +
∑

ij

zizjaij(y, z))

where the mj and aij are just some smooth functions. This follows by writing
g(y, z) = (Y (y, z), Z(y, z)). The fact that 0W = {z = 0} is mapped into itself
means Z(y, 0) = 0, the fact that this map on Y is the identity means Y (y, 0) = y
which gives the first part of (L3.56) and then the part of the Jacobian in (L3.55)
is just ∂Z/∂z(y, 0) = Id which gives the second part of (L3.56).

Now, to show (L3.52) we will use ‘Moser’s method’. This is based first on the
fact that the map in (L3.56) is connected to the identity by a curve of diffeomor-
phisms (possibly in a smaller neighbourhood of the zero section) of the same type.
Locally (and that is all that really matters) this is clear since we can consider

(L3.57) gs(y, z) = (y + s
∑

j

zjmj(y, z), z + s
∑

ij

zizjaij(y, z)).

So we want to show that g∗1u = v ∈ Im
S (W, 0W ) if u ∈ Im

S (W, 0W ) (and has support
sufficiently close to 0W ). Now, the clever idea of Moser (not in this context) is to
try to construct a smooth curve

(L3.58) us ∈ C∞([0, 1]s; I
m
S (W, 0W )) s.t. u1 = u and

d

ds
g∗sus = 0.

If we could do this (and actually we can) then we conclude that g∗sus is constant,
so

(L3.59) g∗u = g∗1u1 = g∗0u0 = u0 ∈ Im
S (W, 0W ).

So, why might we expect to be able to do this? Well, the ‘trick’ here is the
identity

(L3.60)
d

ds
g∗sus = g∗s (

du

ds
+ Vsus)

where Vs is a vector field determined by gs. Once we work out what this vector field
is, we need to choose us to satify, in addition to (L3.58),

(L3.61)
du

ds
+ Vsus = 0.

The remarkable thing is that gs has disappeared, we only need to consider its
‘infinitesmal generator’ Vs.

3+. Addenda to Lecture 3

3+.1. Densities. If U is any finite dimensional (complex) vector space we set

(3+.62) Im
S (W, {0};U) = Im

S (W, {0}) ⊗C U

and identify it as the ‘space of conormal distributions with values in U.’ (Of course
you can do this with all distributions, etc).
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Exercise 15. Check that the Fourier transform gives an isomorphism

(3+.63) cF : Im
S (W, {0};U) −→ ρ−m′

C∞(W ′;U ⊗ ΩW ′), m′ = m +
n

4
.

Show further that there is a canonical isomorphism ΩU ′ = (ΩU)′ for any vector
space, and hence that ΩU ′⊗ΩU ≡ C (or R if U is real) is canonically trivial. Hence
(or directly) show that the integration map (L3.1) gives a linearly-invariant map

(3+.64)

∫

Rn

: Im
S (W, {0}; ΩW ) −→ C

(as it should).

3+.2. Properties of conormal distributions.

3+.3. The Thom class.

3+.4. Submanifolds and restriction.


