
CHAPTER 23

Index for product-type families

Lecture 23: 8 December, 2005

It is probably a good thing that no one gave me notes of this lecture. This
allows me to write something closer to what I should have said and try to undo
some of the confusion I must have sown!

NB. At this stage, I have paid no serious attention to the coefficients in the
expansion of the odd Chern character and correspondingly the eta forms. As a
result you will find some discrepancies with the constants below — at some point
I will track down these constants (and quite a few ealier ones!)

L23.1. Product-type Toeplitz algebra. I wanted to finish this course with
an example of an index formula showing how the eta forms discussed last time enter
as ‘regularized Chern forms’.1 To make thing reasonably simple2 I will consider a
product M × S where M is an arbitrary compact manifold.3 To further simplify
things I will consider operators on a fixed bundle and indeed a trivial one (this is
not much of a restriction since one can always complement a bundle to be trivial,
with the identity operator on the complement). Thus, the fibration is actually a
product

(L23.1) M × S

π

��

M.

Rather than consider a general elliptic element A ∈ Ψ0,0
π−pt(M ; CN ) initially I

will further restrict the problem by considering the Toeplitz algebra in this sense.
Recall that the fibrewise operators

(L23.2) C
∞(M ; Ψ0(S; CN )) ⊂ Ψ0,0

π−pt(M ; CN ).

In particular the Szegő projector, S, on S lifts to an element of the product-type
algebra. Thus we can consider the Toeplitz subalgebra of the product-type algebra

(L23.3) Ψ0,0
π−pt,T (M ; CN ) = SΨ0,0

π−pt(M ; CN )S.

0.7E; Revised: 29-11-2006; Run: November 29, 2006

1In fact I had hoped to do a reasonably general case, but there is still some work required
for this.

2And let’s face it I had enough trouble with this as it is.
3If you are feeling energetic a natural generalization to understand would be that of a circle

bundle, more precisely the circle bundle of a complex line bundle (hence oriented), over a compact
manifold.
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184 23. INDEX FOR PRODUCT-TYPE FAMILIES

The symbol algebra for Ψ0,0
π−pt(M ; CN ) takes values in smooth maps in matrices

on the blown-up cosphere bundle [S∗(M × S), S∗M ]. In this case, because S∗
S is

just two copies of S,

(L23.4) [S∗(M × S), S∗M ] = S∗
+(M × S) ⊔ S∗

−(M × S)

is just the disjoint of the two compact manifolds with boundary, consisting of the
upper half-sphere bundle and the lower half-sphere bundle, separated by the blow-
up rather than meeting at the equatorial sphere bundle. For a fibrewise family the
symbol is the lift of the symbol of the family, so for the Szegő projector it is the
identity on the upper half-sphere bundle and 0 on the lower half. Thus, symbol
map gives a short exact sequence

(L23.5) Ψ−1,0
π−pt,T (M ; CN ) −→ Ψ0,0

π−pt,T (M ; CN ) −→ C
∞(S∗

+(M × S);M(N, C)).

The base family for a fibrewise family is just the family itself (lifted to the
cosphere bundle of the base). So for the Toeplitz algebra in this product case we
get a short exact sequence

(L23.6) Ψ0,−1
π−pt,T (M ; CN ) −→ Ψ0,0

π−pt,T (M ; CN ) −→ C
∞(S∗M ; Ψ0

T (S;M(N, C))).

So, consider an elliptic element A ∈ Ψ−1,0
π−pt,T (M ; CN ), meaning that the sym-

bol a = σ0(A) ∈ C∞(S∗
+(M × S);GL(N, C)) and the base family β = β(A) ∈

C∞(S∗M ; Ψ0
T (S;M(N, C))) are invertible, so β−1 ∈ C∞(S∗M ; Ψ0

T (S;M(N, C))).
Under these conditions we may easily check that A defines a Fredholm operator4

(L23.7) A : C∞(M × S; CN ) −→ C
∞(M × S; CN )

and we wish to compute the index.
For an elliptic element of Ψ0(M × S; CN ) the index is given by the formula of

Atiyah and Singer. The assumptions we have made above mean that the formula
simplifies. First, the relative Chern character reduces to the odd Chern character,
since we are working on a trivial bundle and may take the trivial connection. Thus
the topological image of the symbol is

(L23.8) Ch(a) =
∑

k

ck Tr
(

(a−1da)2k+1
)

then the index formula becomes

(L23.9) ind(A) =

∫

S∗(M×S)

Td(M) ∧ Ch(a).

In principle the Todd class of M × S enters here, but this can easily be seen to
reduce to the Todd class of M. Although I have not discussed Td in detail here, we
may take it as the lift of a cohomology class on M, represented by some explicit
deRham class, Td(M) ∈ C∞(M ; Λevn) pulled back to S∗(M × S).

So, what I want to show is how the eta forms enter in the corresponding formula
for the elliptic elements of the Toeplitz algebra.

4Construct a parameterix!
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Theorem 14. For an elliptic element A ∈ Ψ−1,0
π−pt,T (M ; CN ) the index is given

by

(L23.10) ind(A) = −
1

2

∫

S∗M

Td(M) ∧ η(β) +

∫

S∗

+
(M×S)

Td(M) ∧ Ch(a),

where η(β) =
∑

k

ckη2k+1(β) =
∑

k

ckTr
(

(β−1dβ)2k+1
)

and Ch(a) is given by (L23.8).

L23.2. Variation formulæ. Let me deduce variation formulæ for the (odd)
eta forms and the odd Chern character which follow from the computation, done
eariler, of the exterior derivative in each case.

For the eta forms on the group G0
T (S; CN ) →֒ G0

T (S; Ψ−∞(Z;E)) of invertible
Toeplitz operators with values in N × N matrices

(L23.11) η2k+1(B) = Tr((B−1dB)2k+1)

we know, from Proposition 50, that

(L23.12) dη2k+1(B) = σ∗
0(β2k+2 + dγ2k+1)

where the forms on the right are both defined on the loop group G−∞
(1) but in this

case we have descended to GL(N, C) :

(L23.13) β2k+2(b) = −
1

2

∫

S

tr((b−1db)2k+2b−1∂θb)dθ,

γ2k+1(b) = −
1

2

∫

S

tr((b−1db)2k+1b−1∂θb)dθ, b ∈ C
∞(S; GL(N, C)).

So, if we suppose that X is an oriented compact manifold without boundary
and that

(L23.14) F ∈ C
∞(X × (0, 1)t;G

0
T (S; CN ))

then we can consider the function

(L23.15) h1(t) =

∫

X

T ∧ F ∗
t η2k+1

where T ∈ C∞(X; Λd−2k−1) is a fixed closed form. Certainly h1 is a smooth function
and

(L23.16) h′
1(t) =

∫

X

T ∧
d

dt
F ∗

t η2k+1.

Consider the pull back F ∗η2k+1 to X × (0, 1). It can be decomposed with respect
to dt as

(L23.17) F ∗η2k+1 = η2k+1(F, t) + dt ∧ η′
2k(F, t), η2k+1(F, t) = F ∗

t η2k+1,

η′
2k(F, t) =

2k
∑

j=0

(−1)jF ∗
t Tr((F−1dXF )jF−1 dF

dt
(F−1dXF )2k−j)
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where the coefficients are t-dependent forms on X. If we write out the formula for
dF ∗η2k+1 obtained by pulling back (L23.12) we find

(L23.18) dF ∗η2k+1 = dXη2k+1(F, t) + dt ∧

(

d

dt
η2k+1(F, t) − dXη′

2k(F, t)

)

= (F ◦ σ)∗0 (β2k+2 + dγ2k+1) .

So, expanding the last pull-back with respect to dt gives

(L23.19)
d

dt
η2k+1(F, t) = dXη′

2k(F, t) + β′
2k+1(f, t) + dXγ′

2k+1(f, t)

where f = σ ◦ F is the symbol map for the family F and

(L23.20)

β′
2k+1(f, t) = −

1

2

2k+1
∑

j=0

(−1)j

∫

S

Tr((f−1dXf)j(f−1 df

dt
)(f−1dXf)2k+1−jf−1∂θf)dθ,

γ′
2k+1(f, t) = −

1

2

2k
∑

j=0

∫

S

Tr((f−1dXf)jf−1 df

dt
(f−1dXf)2k−jf−1∂θf)dθ, f = σ0◦F.

So now, if we insert this formula into (L23.16) we find that the exact terms
integrate to zero, so only β′

2k+1 survives and

(L23.21) h′
1(t) =

∫

X

T ∧ β′
2k+1(f, t)

with β′
2k+1 given by (L23.20).

Next we make a similar computation for the Chern character. Suppose that Y

is a compact manifold with boundary of dimension q, that T ′ ∈ C∞(Y ; Λq−2k−1) is
closed and that G : Y × (0, 1) −→ G−∞ is smooth. Then consider the function

(L23.22) h2(t) =

∫

Y

T ′
∧ G∗

t β2k+1

where β2k+1 are the component forms for the odd Chern character,

(L23.23) β2k+1 = Tr(
(

a−1da)2k+1
)

.

We know that dβ2k+1 = 0 and from this we find

(L23.24)
d

dt
G∗

t β2k+1 = dY β′
2k, β′

2k = Tr

(

(G−1dY G)2kG−1 dG

dt

)

.

Using this and Stokes’ theorem

(L23.25) h′
2(t) =

∫

Y

T ′
∧ dY β′

2k =

∫

∂Y

i∗∂Y T ′
∧ β′

2k.

In the application of these formulæ below, ∂Y = X × S. Thus the form β′
2k is

pulled back to the product X × S. In this case, decomposing the total differential
on ∂Y and carrying out the integral over the circle, first, shows that

(L23.26)

h′
2(t) =

2k−1
∑

j=0

(−1)j

∫

X×S

i∗∂Y T ′
∧Tr

(

(g−1dXg)jg−1dθg(g−1dXg)2k−1−jg−1 dg

dt

)

dθ,

g = G
∣

∣

∂Y =X×S
.
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Compare this to (L23.20), first increasing k to k + 1.

L23.3. Proof of Theorem 14. We first show that the right side of the for-
mula (L23.10) is homotopy invariant. Thus, for an elliptic 1-parameter family

At ∈ C∞((0, 1);Ψ−1,0
π−pt,T (M ; CN )) set

(L23.27) I1(t) = −
1

2

∫

S∗M

Td(M) ∧ η(β), I2(t) =

∫

S∗

+
(M×S)

Td(M) ∧ Ch(a).

The discussion above allows us to compute the derivatives of these functions.
Namely if we set

(L23.28) bt = σ0(β(At)) = at

∣

∣

S∗M×S
,

with equality being the consistency between the symbol and the base family, then
from (L23.21), (L23.24) and (L23.25)5

(L23.29) I ′1(t) + I ′2(t) = 0.

Thus the sum

(L23.30) I = I1(t) + I2(t) is constant.

So, to prove the index formula we may make a homotopy to some operator for
which we can compute the index, in this case using the Atiyah-Singer theorem.6

Consider the symbol a = σ0(A) ∈ C∞(S∗
+(M × S; GL(N, C)). This is a ball

bundle, where the origin of each fibre can be taken as the fibre vertical, the point
corresponding to

(L23.31) M × S ∋ (m, θ) 7−→ (m, θ, 0, dθ) that is (0, 1) ∈ T ∗
mM × T ∗

θ S.

Thus the fibres are contractible. This allows us to construct a smooth family of
symbols

(L23.32) ã : [0, 1]t × S∗
+(M × S) −→ GL(N, C), ã

∣

∣

t=0
= a, ã

∣

∣

t=1
= π∗(a

∣

∣

M×S
).

For instance, one can first smoothly deform the symbol so that it is fibre-constant
near the ‘centre’ in (L23.31) and then radially translate the symbol to expand the
constant region.

In particular the boundary symbols

(L23.33) b̃ = ã
∣

∣

S∗M×S=∂S∗

+
(M×S)

: [0, 1] × S∗M × S −→ GL(N, C)

form a 1-parameter family of symbols of Toeplitz operators, in C∞(S; GL(N, C))
parameterized by S∗M. The compatibility condition between symbols and base
families shows that at t = 0, for the given operator, these are the symbols of an
invertible family of Toeplitz operators. It follows from our earlier results about
such families that we can lift to a family of invertible Toeplitz operators

(L23.34) β̃ : [0, 1] × S
∗M −→ Ψ0

T (S; CN ), β̃−1
∈ C

∞([0, 1] × S∗N ; Ψ0
T (S; CN )),

β̃
∣

∣

t=0
= β(A).

5For the moment I am completely ignoring the constants – there is good reason to believe
they work out correctly!

6In the lecture I was trying to run the homotopy in the wrong direction, which accounts for
some of my discomforture.
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Finally then we may select a smooth family ÃtΨ
0
π−pt,T (M × S; CN ) with symbol ã

and base family β̃. This is therefore a family of (fully) elliptic operators and hence
has constant index

(L23.35) ind(At) ∈ Z is smooth, hence constant.

On the other hand we have also shown (L23.30), so it suffices to show that

(L23.36) ind(Ã1) = I(1),

which reduces to proving the index formula (L23.10) under the additional assump-
tion that

(L23.37) σ0(A) is fibre constant on S∗
+(M × S) −→ M × S.

This just means that σ0(A) = σ0(L) where L ∈ C∞(M × S; GL(N, C)) is a bundle
isomorphism for our trivial bundle. As an isomorphism L has vanishing index, so
we may compose A with the inverse and strengthen (L23.37) further and suppose
that

(L23.38) σ0(A) = Id .

Of course, we do have to check afterwards that the putative index formula behaves
‘correctly’ under multiplication by a bundle isomorphism.

Thus we are reduced to the case where the symbol is the identity. As we know,
by a further (small) homotopy we may assume that the operator itself is of the

form Id+B where B ∈ Ψ−∞,0
π−pt,T (M ×S; CN ), meaning in particular that its indicial

family is

(L23.39) β : S∗M −→ G−∞
T (S; CN ),

so is of the form Id+smoothing and everywhere invertible. This group (classifying
for K−1) is contained in our contractible Toeplitz group, so one might think that the
whole thing could be contracted away and the index would then be zero. However
this cannot be done without deforming the symbol to be non-trivial again. In fact
this approach works perfectly well and reduces the problem to the Atiyah-Singer
theorem on M × S.

Rather than do this I will go in the ‘opposite direction’. Namely we can further
deform the base family, through invertibles of course, until it is a family of finite
rank perturbations of the identity, just doing the deformation

(L23.40) (1 − t)β + t
(

Id−π(k) + π(k)βπ(k)

)

, k large

where π(k) is projection onto the span of the first k terms in the Fourier expansion.
It follows that the same deformation for the operator gives an elliptic family

(L23.41) (1 − t)A + t
(

(Id−π(k) + π(k)Aπ(k)

)

so we are reduced to the case that A acts as the identity on the span of all Fourier
coefficients greater than k (of course with arbitrary coefficients in C∞(M)).

This corresponds to the inclusion Ψ0(M, CM ) →֒ Ψ−∞,0
π−pt,T (M ×S; CN ) in which

a pseudodifferential operator is lifted to a finite dimensional subbundle of C∞(M ×

S; CN ) as a bundle over M. The symbol simply lifts to define the base symbol and
the index to the index so we are finally reduced to the Atiyah-Singer theorem on
M,

(L23.42) ind(A) =

∫

M

Td(M)Chodd(σ0(A)), A ∈ Ψ0(M ; CM ) elliptic.
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By construction,7 the eta ‘character’ lifts the odd Chern character, so indeed
(L23.42) reduces to, and hence implies, (L23.10) in this case.

Finally then it remains to check what happens to the formula under composition
with a bundle isomorphism; I certainly did not do this in the lecture!

23+. Addenda to Lecture 23

23+.1. Composition with bundle isomophisms.

23+.2. Non-Toeplitz extension. As a first simple generalization of the
product-type index formula (L23.10) consider the case of a general elliptic element

A ∈ Ψ0,0
π−pt(M × S; CN ) for the product fibration (L23.1). The obvious general-

ization of (L23.10) is to include ‘both sides’ of the symbol and to extend the eta
invariant to pseudodifferential operators on S.

Proposition 51. For any fully elliptic element A ∈ Ψ0,0
π−pt(M × S; CN )

(23+.43)

ind(A) = −
1

2

∫

S∗M

Td(M)∧η(β)+
∑

Σ=±

∫

S∗

Σ
(M×S)

Td(M)∧Ch(a), β = β(A), a = σ0(A).

Proof. For the moment I just assume that the right side of (23+.43) is ho-
motopy invariant. This involves the extension of the analysis of the variation of the
η forms to the full pseudodifferential calculus on the circle and is straightforward
(there is an effective reversal of orientation between the two components of the
cosphere bundle.

Granted this, it is enough to prove (23+.43) for some operator which is in
the same path component of the full elliptic operators. Following the construction
of homotopies above the operator may be deformed to one with symbol on in the
positive half S∗

+(M×S) equal to that of a bundle isomorphism and then, composing
with the inverse of this, to one with symbol equal to the identity on S∗

+(M × S).
To proceed further we ‘separate’ the base family into the product of two Toeplitz
families, one for the top and one for the bottom.

By a further small deformation we can assume that the full symbol of the base
family is equal to the identity on the positive side of S∗

S, i.e. that the base family
is of the form
(23+.44)
β(A) = π Idπ+(Id−π)α−−(Id−π)+γ, γ ∈ C

∞(B; Ψ−∞(S; CN )), α1 ∈ C
∞(B; Ψ0

−T (S; CN ))

and the whole operator is invertible. Since γ is a smoothing family

(23+.45) π≤kγπ≤k −→ γ ∈ C
∞(B; Ψ−∞(S; CN ))

where π≤k is projection onto all modes (including the negative ones) less than k.

Thus when the norm of the difference in (23+.45) is sufficiently small we can replace
γ by π≤kγπ≤k, and in fact A by

π≤kAπ≤k + Id−π≤k

and so arrange that A itself acts as the identity on all Fourier modes exp(ilθ),
l > k. Now, conjugating the whole operator by the bundle isomophism ei(k+1)θ

gives a family

(23+.46) A′ = e−i(k+1)θAei(k+1)θ
∈ C

∞(B; Ψ0,0
π -pt,−T (M × S; CN ))

7Modulo the constant chase
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with values in the negative Toeplitz subalgebra, extended as the identity on the
positive modes. Again from the invariance of the result under bundle isomorphisms
it suffices to prove the formula for A′.

This reduces the problem to the previous case, with the orientation reversed.
�


