
CHAPTER 19

Multiplicativity and excision

Lecture 19: 22 November, 2005

L19.1. Multiplicativity. Last time I set up the following single operator
version of multiplicativity but did not complete the proof. The general case is no
harder, the notational overhead is just heavier.

Proposition 43. [Multiplicativity] Consider a ‘tower’ of compact fibrations

(L19.1) S M̃

φ̃

��
Z M

φ

��
B

and suppose that P ∈ Ψ0(M̃/M ; E) is an elliptic family with trivial one-dimensional
index bundle then for any ellptic family A ∈ Ψ0(M/B; F)

(L19.2) ind(A) = ind(P ⊗ A) = ind(AP ) ∈ K0(B)

where P ⊗ A is the product-type family

(L19.3) P ⊗ A =

(

P 0
Anull(P ) P ∗

)

and AP ∈ Ψ0(M̃/B; E ⊗ F) is any family with symbol

(L19.4)

(

χ1σ0(P ) −χ2σ0(A)∗

χ2σ(A)) χ1σ0(P )∗

)

where χ1, χ2 is a partition of unity on S∗(M̃/B) subordinate to the cover by the

complements of φ̃∗(S∗(M/B)) and S∗(M̃/M) for some choice of connection on φ̃.

Proof. I set this up last time in the single operator case, where the bottom
fibration just has one fibre and B is a point. Formally the general case is not very
different. Thus, by assumption, the null space of the family P is a trivial line bundle
over M. We can make A act between sections of E+ ⊗ φ̃∗F+ and E+ ⊗ φ̃∗F− by
considering it as the composite

(L19.5) Anull(P ) = πnull(P )Aπnull(P ) : Ψ0,−∞

φ̃-pt
(M̃/B;E+ ⊗ F)
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156 19. MULTIPLICATIVITY AND EXCISION

where I am using F to stand for the ‘superbundle’ (F+, F−) and E+ ⊗F stands for
(E+⊗F+, E+⊗F−). Then (L19.3) is a well-defined family of product-type operators

(it is a family over B, and of product-type with respect to φ̃.)
We know by direct computation that its index is ind(A), at least if A has been

stabilized to have a smooth null bundle. Namely, the null space of P ⊗ A consists
of pairs (u, v) ∈ C∞(M̃ ;E+ ⊗ F+) ⊕ C∞(M̃ ;E+ ⊗ F−) satisfying

(L19.6)
Pu = 0 =⇒ u ∈ C∞(M ;E+ ⊗ null(P )),

Anull(P )u + P ∗v = 0 =⇒ Au = 0, v = 0.

In the second line we use the fact that the range of P ∗ is orthogonal to the null
space of P so the two terms must vanish separately. Then Au = 0 just recovers the
null space of A. For the adjoint

(L19.7) (P ⊗ A)∗ =

(

P ∗ A∗
null(P )

0 P

)

we similarly conclude that (u′, v′) in the null space implies that u = 0, v ∈
C∞(M ;E− ⊗ null(P )) and then u ∈ null(A∗).

We also ‘know’ (I only did it in the single operator case in fact) that a homotopy
of totally elliptic product-type pseudodifferential operators has constant index in
K-theory of the base; I will add this to the addenda. So we proceed to deform the
family (L19.3) but keeping total ellipticity. Recall that the family P ⊗ A is totally
elliptic because it symbol and base symbol are respectively

(L19.8)

σ0,0(P ⊗ A) =

(

σ0(P ) 0
0 σ0(P )∗

)

β0(P ⊗ A) =

(

P 0
σ0(A)πnull(P ) P ∗

)

.

Now, we have the partition of unity χ1, χ2 on S∗(M̃/B) in which χ2 is sup-

ported near the lift of T ∗(M/B) under φ̃. This means that χ2σ0(A) is a well-defined
symbol in a neighbourhood of the ‘non-commutative’ front face – on the fibres of
which it is constant. Take an element Ã ∈ Ψ0(M̃/B;E+ ⊗ F) which has symbol
χ2σ0(A) and consider the curve of operators

(L19.9)

(

P −tÃ∗

(1 − t)Anull(P ) + tÃ P ∗

)

∈ Ψ0,0

φ̃-pt
(M̃/B; E ⊗ F).

The claim is that this remains elliptic. Its usual symbol is just

(L19.10)

(

σ0(P ) −tχ2σ0(A)∗

tχ2σ(A) σ(P )∗

)

.

The crucial property of this (Clifford) tensor product matrix is that it is invertible
because the ‘diagonal’ part is invertible. Consider an element (α, α′) of the null
space. Note that σ(P ) and σ(A) commute, because the act on different factors of
the tensor product, so

(L19.11) σ0(P )α − tχ2σ0(A)∗α′ = 0, tχ2σ(A)α + σ(P )∗β = 0 =⇒

α = tχ2σ0(A)∗σ0(P )−1α′ = −t2χ2
2σ0(A)∗σ0(A)(σ(P )∗)−1σ0(P )−1α.
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Thus the null space is trivial, because of the invertibility of σ0(P ) and hence the
operator is ‘symbolically’ elliptic. The non-commutative, or base symbol is

(L19.12)

(

P −tχ2σ0(A)
(1 − t)σ0(A)null(P ) + tσ0(A) P ∗

)

since (as a fibre family) P is its own base symbol. We know this to be invertible
for t = 0 and for t > 0 a similar argument applies. The symbol preserves the
decomposition coming from the null space of P. On it, it is invertible because it
is actually constant in t. Off the null space of P it is invertible because of the
invertibility of P and an argument just like (L19.11) but now using P instead of
its symbol. Note that P and σ0(A) commute because the latter is fibre constant

for φ̃ and acts on a different bundle in the tensor product. Thus we arrive at the
operator with t = 1. Now choose an element

(L19.13) P̃ ∈ Ψ0(M̃/B; F ⊗ E+) with σ0(P̃ ) = χ1σ0(P )

and perform the homotopy

(L19.14)

(

(1 − t)P + tP̃ −Ã∗

Ã (1 − t)P ∗ + tP̃ ∗

)

∈ Ψ0,0

φ̃-pt
(M̃/B; E ⊗ F).

The ‘commutative’ symbol of this is
(

(1 − t)σ0(P ) + tχ1σ0(P ) −χ2σ0(A)∗

χ2σ(A) (1 − t)σ(P )∗ + tχ2σ0(P )∗

)

which remains invertible everywhere. Similarly the ‘non-commutative’ symbol is
(

(1 − t)P −σ0(A)
σ0(A)null(P ) (1 − t)P ∗

)

which is invertible because of the invertibilty of σ0(A). Thus the family remains
elliptic throughout the deformation and we finally arrive at

(L19.15)

(

P̃ −Ã∗

Ã P̃ ∗

)

∈ Ψ0(M̃/B; E ⊗ F)

which is an elliptic family in the usual sense with symbol (L19.4). Thus (L19.2)
follows. �

Corollary 7. For an iterated fibration (L19.1), if b ∈ K0
c
(T ∗(M̃/M)) has

ind(b) = 1 ∈ K0(M) then tensor product gives a commutative diagramme

(L19.16) K0
c
(T ∗(M/B))

⊗b
//

ind
&&L

LLLLLLLLLL
K0

c
(T ∗(M̃/B))

ind
xxrrrrrrrrrrr

B

where for [(E, a)] ∈ K0
c
(T ∗(M/B)), b ⊗ [(E, a)] is represented by

(L19.17)

(

χ1b −χ2a
χ2a χ1b

∗

)

where b = [(F, b)].

Proof. The main thing to check is that the top map in (L19.16) is well-defined,
using (L19.17). This is straightforward. �
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L19.2. Excision.

Proposition 44. [Excision.] Let Mi −→ B be fibrations of compact manifolds
and suppose ij : E →֒ Mj , j = 1, 2, are inclusions of a non-compact manifold as an
open subset giving a commutative diagramme,

(L19.18) M1

φ1
  B

BB
BB

BB
B

U?
_i1oo � � i2 // M2

φ2
~~||

||
||

||

B

then the diagramme

(L19.19) K0
c
(T ∗(M1/B))

ind

''OOOOOOOOOOO

K0
c
(T ∗(U/B))

(i1)∗
66mmmmmmmmmmmmm

(i2)∗ ((QQQQQQQQQQQQQ
K0(B)

K0
c
(T ∗(M2/B))

ind

77ooooooooooo

is commutative.

Proof. The main issue is to understand the maps (ij)∗ induced by the in-
clusions. A representative of an element of K0

c (T ∗(U/B)) is a triple (E+, E−, a)
where E± are bundles over U and a is an isomophism between the lifts of them
outside a compact subset K ⊂ T ∗(U/B). The fact that the two fibrations are the
same on U means that T ∗(U/B) is a well-defined bundle over U, identified by the
ij with T ∗)ij(U)(Mj/B). The image, K ′, of K under projection to U is compact
and a is therefore defined over the whole of the bundle T ∗

U\K′(U/B). We can use

the restriction of a to the zero section to identify the two bundles E+ and E− over
U \K ′′, where K ′′ is the image of a slightly larger compact subset of T ∗(U/B) which
contains K ′ in its interior and having done this use the fibre homogeneity of the
bundle to give a homotopy between a and a′ which is now the identity isomorphism
between E+ and E− in U \ K ′′. Now, recall from the definition that E+ and E−

are in any case supposed to be trivial outside a compact set, so we may replace
(E+, E−, a) by a representative in which E± are trivial outside a compact subset
of U and a = Id outside such a set. Of course a need not be the identity outside
a compact subset of T ∗(U/B). Then the maps are given by extending E± and a
trivially outside U to give well-defined maps

(L19.20) (ij)∗ : K0
c (T ∗(U/B)) −→ K0

c (T ∗(Mj/B).

Now, the index is defined by quantizing the ‘symbol’ a – deformed to be ho-
mogeneous of degree 0 outside the zero section of T ∗(Mj/B) to a family of pseu-
dodifferential operators. We know that the result is independent of the family
chosen with the given symbol, so we may choose the families to be of the form
Pj ∈ Ψ0(Mj/B;E+, E−) and to be equal to the identity outside Mj \ Kj for
K = ij(K) the image of a compact subset of U. Thus, Pj − Id is to have its
Schwartz kernel supported in Kj ×Kj . Now, in this sense the two families of opera-
tors are ‘exactly the same’. We only have to make sure that nothing goes wrong in
the stabilization process to define the index as the difference of the null and conull
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bundles. Of course we may start with the ‘same’ parameterices for the Pj – each
being Id−Pj′ where P ′

j has kernel support in Kj × Kj where they are same. The
remaining problem here is that I did not do the stabilization procedure fully in
the families case. Here I will refer to an alternative stabilization procedure – the
relationship between this and the other one (which I did not complete!) will be
added to the addenda.

To define the families index we need to stabilize the null space, or the range,
to a bundle. One way to do this is to add an auxilliary finite dimensional map.
Namely

Lemma 32. If P ∈ Ψm(M/B; E), E = (E+, E−), is elliptic then there is a
smooth map S ∈ C∞(B × M ; hom(CN ;E−)) such that

(L19.21)
(

P ⊕ S
)

:
C∞(M ;E+)

⊕
C∞(B; CN )

−→ C∞(M ;E−) is surjective.

Proof. For each point b ∈ B we know that the range of P has finite codimen-
sion. We can therefore find a finite number vi ∈ C∞(Zb;E−), of smooth sections
which span a complement. Extending them to smooth sections of E− over M (say
supported close to b) will mean, by continuity, that the vj span the range of Pb′

for b′ in a neighbourhood of b. Now, by compactness we may cover B by a finite
number of such neighourhoods with corresponding vj,k ∈ C∞(M ;E−) as k ranges
over some finite set. Now, let N be the total number of such sections and let S be
the linear map from C

N ∋ aj,k to
∑

j

aj,kvj,k. The sum P + S is surjective at each

point of the base, since it is constructed to be surjective when to the subspace with
aj,k = 0 for all but one value of k. Now, the fact that P + S is surjective leads, by
the same argument as before, to the conclusion that the null spaces form a smooth
finite dimensional subbundle of the bundle C∞(M/B;E+) ⊕ C

N as a bundle over
B. The claim (or definition depending on how you look at it) is that

(L19.22) ind(P ) = [null(P + S), CN ] ∈ K0(B).

In fact it is easy to see that two choices or S are stabily homotopic – just put all the
choices together, maybe refine the covering to a common one such that one each
set one of each stabilizations works, and then do an appropriate homotopy]. �

With this ‘definition’ of the families index, we may complete the proof of exci-
sion. Namely the stabilizing sections can always be chosen to have support in Kj

and we may take the same stabilization for the two operators P1 and P2. �

L19.3. Atiyah-Singer index theorem. Now we can state the first form of
the Atiyah-Singer families index theorem – in K-theory.

Theorem 10. If φ : M −→ B is a fibration of compact manifold then the
analytic index map

(L19.23) ind : K0(T ∗(M/B)) −→ K0(B)
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defined by quantization of symbols, is equal to the topological index map, i.e. can
be factored through any embedding of the fibration

(L19.24)

M
e //

φ
  A

AA
AA

AA
A R

n × B

πB

{{wwwwwwwww

B,

so

K0(T ∗(M/B))
⊗b

//

ind
((RRRRRRRRRRRRRR

K0
c
(T ∗(NM/B))

i∗ // Kc(R
2N × B)

ind
vvmmmmmmmmmmmmm

K0(B)

commutes

where ⊗b is the product with the Bott element for the normal fibration.

19+. Addenda to Lecture 19


