
CHAPTER 18

Product-type pseudodifferential operators

Lecture 18: 17 November, 2005

The main application I will make of the product-type conormal distribution,
that I discussed last time, is to product-type pseudodifferential operators. Since
these operators are associated to a fibration, let me start with a short discussion of
the geometry of fibrations.

L18.1. Product-type operators defined. Thus consider a fibration,

(L18.1) Z M

φ

��

B.

If we take the product fibration M2 −→ B2 and map the diagonal of B into the
product, B = DiagB −→ B2 then pulling back the product gives us the fibre
product

(L18.2) Z2 M2
φ

φ2

��

�

�

// M2

φ2

��

B
�

� Diag
// B2.

Since the points of M2
φ ⊂M2 are exactly those mapped to the diagonal in B2

under the fibration, we have a pair of embedded submanifolds

(L18.3) DiagM ⊂M2
φ →֒M2.

Note that M2
φ is often called the fibre diagonal. In local coordinates z, y and z′, y

near different points in M but above the same point in B with respect to which
the fibration is projection onto the second factor,

(L18.4) DiagM = {z = z′, y = y′} ⊂M2
φ = {y = y′} ⊂M2.

Definition 7. The pseudodifferential operators on M of product type with
respect to the fibration φ and acting between sections of bundle, E and F over M
are identified as a space of kernels with the product-type conormal distributions

(L18.5) Ψm,m′

φ−pt (M ;E,F ) = Im̃,m̃′

(M2,M2
φ,Diag;Hom(E,F )⊗ ΩR).
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148 18. PRODUCT-TYPE PSEUDODIFFERENTIAL OPERATORS

Lemma 29. The product-type pseudodifferential operators act continuously on
smooth sections:

(L18.6) Ψm,m′

φ−pt (M ;E,F ) ∋ A : C∞(M ;E) −→ C∞(M ;F ).

Proof. This is a direct application of the simple push-forward theorem for
product-type conormal distributions, as in the standard case before. Namely the
product-type conormal distributions on any manifold X are a module over C∞(X) :

C∞(X) · Im,m′

(X,Y,Z;E) −→ Im,m′

(X,Y,Z;E).

If π : X −→ X ′ is a fibration which is transversal to both submanifolds and E is
the lift of a bundle from the base then

π∗ : Im,m′

(X,Y,Z;π∗E ⊗ Ω) −→ C∞(X ′; Ω)

is continuous.
In this case we consider the projection πL : M2 −→M as a fibration. For any

bundles E and F over M the module product (L18.1) followed by composition in
the fibres gives

(L18.7) C∞(M2;E) · Im,m′

(M2,M2
φ,Diag;Hom(E,F )⊗ ΩR) −→

Im,m′

(M2,M2
φ,Diag;π∗

LF ⊗ ΩR).

The cancellation of left densities, as in the standard case, allows us to interpret
(L18.6) as the composition of the maps (L18.1) and (L18.1) (for πL) with pull-
back:

(L18.8) A : C∞(M ;E) ∋ u 7−→ π∗

Ru ∈ C∞(M2;E)
·A
−→

Im,m′

(M2,M2
φ,Diag;π∗

LF ⊗ ΩR)
(πL)∗
−→ C∞(M ;F ).

�

L18.2. Symbol maps. The symbol, acting on the space of conormal distribu-
tions, associated to the smaller submanifold M2

φ takes values in (conormal) sections

of a bundle over the the sphere bundle of the conormal bundle, SN∗M2
φ.

Lemma 30. For any fibration, (L18.1), the sphere bundle of the conormal bun-
dle to the fibre diagonal, may be naturally identified as the pull-back

(L18.9) SN∗(M2
φ) = π∗(M2

φ) where π : S∗B −→ B,

as a fibration over S∗B with fibre Z2 giving a commutative diagramme

(L18.10) Z2 SN∗(M2
φ) π

//

��

M2
φ

φ2

��

�

�

// M2

φ2

��

S∗B
π

// B
�

� Diag
// B2.

Proof. At any point p ∈ M2
φ the conormal fibre in M2, N∗

p M2
φ is the space

of differentials of functions vanishing on M2
φ. Since M2

φ is the preimage of DiagB

under the product fibration, this is just (φ2)∗N∗

φ(p) DiagB = T ∗

φ(p)B. The same is

therefore true of the spherical quotient, SN∗

p M2
φ which is therefore identified with

the pull-back of the fibration, SN∗

p M2
φ = π∗

pS∗B. In local coordinates this is just

saying that N∗

p M2
φ is spanned by the dyj in terms of product coordinates. �



LECTURE 18: 17 NOVEMBER, 2005 149

For any fibration manifold SN∗(DiagM ) = S∗M as usual where the identifica-
tion comes from pull-back from the left factor of M.

Lemma 31. For a fibration, the boundary of the relative compactification of
N∗ DiagM with respect to the subbundle N∗

Diag
M

M2
φ may be identified with the blow-

up [S∗M,φ∗S∗B] and this fibres

(L18.11) γ : [S∗M,φ∗S∗B] −→ S∗(M/B)

with fibre, over b ∈ B, modelled on T ∗

b B; the boundary of [S∗M,φ∗S∗B] is naturally
identified as

(L18.12) ∂[S∗M,φ∗S∗B] = π∗S∗(M/B),

the pull-back to S∗B of the bundle S∗(M/B) over B.

Proof. This follows from the earlier discussion of the relative compactificaiton
of a vector bundle U with respect to a subbundle V. Namely, the ‘main’ boundary
component of the relative compactification of U with respect to V may be identified
with blow-up [SU, SV ], that this fibres over SU/V with fibres modelled on Vp (at
any point p) and has boundary naturally diffeomorphic ∂[SU, SV ] ≡ π∗

V S(U/V )
to the pull-back of S(U/V ) to SV. In the present case the base is M, U = T ∗M
and V = φ∗T ∗B, the pull-back to M of the cotangent bundle to the base. Thus,
SU = S∗M and SB = φ∗S∗B and the ‘main’ boundary face, [S∗M,φ∗S∗B], fibres
over the ‘vertical sphere bundle’ S∗(M/B) with fibre modelled on the fibres of T ∗B
with the boundary, which is to say the corner of V U, being the pull-back to S∗B
of S∗(M/B). �

With these reinterpretations of the manifolds on which the symbols of product-
type conormal distributions are defined we may reinterpret the general symbol maps
in the case of pseudodifferential operators to give

(L18.13)
σ0,0 : Ψ0,0

φ−pt(M ;E,F ) −→ C∞([S∗M,φ∗S∗B]; hom(E,F )),

β0,0 : Ψ0,0
φ−pt(M ;E,F ) −→ Ψ0(π∗M/S∗B;E,F ).

For operators of double order other than 0, 0 we need to add appropriate ‘homo-
geneity bundles’ to the symbol maps

(L18.14)
σm,m′ : Ψm,m′

φ−pt (M ;E,F ) −→ C∞([S∗M,φ∗S∗B]; hom(E,F ))⊗Nm.m′ ,

βm′,m : Ψm,m′

φ−pt (M ;E,F ) −→ Ψm′

(π∗M/S∗B;E,F ⊗N−m).

These two maps are therefore separately surjective and have joint range the com-
patible subset

(L18.15) σm,m′(βm′,m(A)) = σm,m′(A)
∣

∣

∂[S∗M,φ∗S∗B]
.

I will generally call σm,m′(A) the ‘usual symbol’ since it is a fairly obvious
extension of the standard symbol map. On the other hand I will call βm′,m the ‘base
symbol’. This may be a rather contrarian name, since the base symbol is actually
a family of fibre-wise pseudodifferential operators. However, these depend on the
cotangent varriables in the base and this is why I think of it as the ‘base’ sybmol
– it looks like the symbol of an operator on the base except that it takes values in
pseudodifferential operators on the fibres instead of simply bundle homomorphisms.
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L18.3. Composition. Also very much as in the standard case, the composite
of two pseudodifferential operators, as maps (L18.6) is again a pseudodifferential
operator of product type.

Proposition 35. For any fibration of compact manifolds (L18.1) and any three
bundles E, F and G over M,

(L18.16) Ψ
m1,m′

1

φ−pt (M ;F,G) ◦Ψ
m2,m′

2

φ−pt (M ;E,F ) ⊂ Ψ
m1+m2,m′

1
+m′

2

φ−pt (M ;E,G)

and the symbol maps are both homomorphisms, i.e. map products to products

(L18.17)
σm1+m2,m′

1
+m′

2
(AB) =σm1,m′

1
(A)σm2,m′

2
(B),

A ∈ Ψ
m1,m′

1

φ−pt (M ;F,G), B ∈ Ψ
m2,m′

2

φ−pt (M ;E,F )

βm′

1
+m′

2
: (AB) = βm′

1
(A)βm′

2
(B) ∈ Ψm′

1
+m′

2(π∗M/S∗B;E,G⊗Nm1+m2
).

Proof. This is basically the same as in the standard case – I did not go through
it carefully in the lecture, but it is written out below in the addenda. �

L18.4. Ellipticity. If both symbols are invertible then A is said to be fully
elliptic and then (in fact iff) it has a parametrix.

Proposition 36. If A ∈ Ψm,m′

φ−pt (M ;E,F ) is fully elliptic in the sense that

σm,m′(A) has an inverse in C∞([S∗M,φ∗S∗B]; hom(F,E))⊗N−m,−m′ and βm′,m(A)

has an inverse in Ψ−m′

(M/B;F,E⊗N−m) then there exists B ∈ Ψ−m,−m′

φ−pt (M ;F,E)
such that

(L18.18) A◦B = IdF −R′, B◦A = IdE −R, R ∈ Ψ−∞(M ;E), R′ ∈ Ψ−∞(M ;F ).

Proof. This is a good opportunity to review the construction of a parametrix
for an elliptic operator in the standard case, since the argument is almost precisely
the same. �

Homotopy invariance of the index follows as before. Namely, if At is a smooth
(in t ∈ [0, 1]) family of elliptic operators then we can find a smooth family of
parametrices Bt up to smoothing errors. The arguments leading to the formula

(L18.19) ind(At) = Tr(IdE −BA)− Tr(IdF −AB)

carry over directly to this more general setting and show that the index is smooth
and integer-valued, hence constant.

Remark 1. This suggests a harder index problem, which I hope to come back
to before the end of the semester, namely what is the (families) index of A of
product-type; it depends only on the (invertible) joint symbol σm,m′(A), βm′,m(A).
Of course it is also the case that full ellipticity is quite a strong condition, since
it requires the invertibility of a family of operators. On the other hand the index
theorem in the standard case gives us a good hold on invertibility, after smoothing
purturbation.

L18.5. Subalgebras. For the application to the index of ordinary pseudodif-
ferential operators we need three important inclusions (see (L18.11)). The first is
of the fibrewise operators.
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Proposition 37. For any fibration of compact manifolds
(L18.20)

Ψm′

(M/B;E,F ) ⊂ Ψ0,m′

φ−pt(M ;E,F ), σm,m′(A) = γ∗σm′,0(A), β0,m′(A) = A.

Proof. This is just the corresponding inclusion of conormal distributions dis-
cussed last time

(L18.21) Im′

(Y,Z;E ⊗ ΩY ) ∋ u →֒ u · δY ∈ I0,m′

(X,Y,Z;E ⊗ ΩX)

in which a (conormal) distribution on Y, with respect to Z, is extended to X as
a ‘Dirac delta’ in the normal variables. Locally (for the fibration case) this is
rather obvious, since in product coordinates z, y and z′, y (the same in the base,
but possibly near different points in the fibre)

(L18.22) Ψm′

(M/B;E) ∋ A = A(y, z, z′) ∈ Im(Z2;E ⊗ ΩZ) −→

δ(y − y′)A(y, z, z′) ∈ Im̃,0̃(M2;M2
φ,Diag;E).

As usual the densities take care of themselves (which one needs to check of course)
and the symbol behaves as indicated in (L18.21). Namely, the base symbol comes
from the (local) Fourier transform in y so recovers the operator and the usual
symbol comes from the full Fourier transform on y, z which is constant in the dual
to y. �

Similarly the inclusion of the standard pseudodifferential operators corresponds
to the inclusion

Im(X,Z;E)←→ Im,m(X,Y,Z;E)

for any embedded submanifold Z ⊂ Y.

Proposition 38. For any fibration of compact manifolds
(L18.23)
Ψm(M ;E,F ) ⊂ Ψm,m

φ−pt(M ;E,F ), σm,m(A) = σm(A), βm,m(A) = σm(A)
∣

∣

φ∗S∗B
.

Thus in the second case the ‘base symbol’ is just the ordinary symbol – so acts
as a bundle isomorphism on the fibres.

Perhaps the most important inclusion for us is that of pseudodifferential op-
erators on the base. For any bundle E over M we may view C∞(M ;E) as an
infinite-dimensional bundle over B, it could be denoted C∞(M/B;E), with fibre
isomorphic to C∞(Z;E

∣

∣

Z
). Suppose we have a family of smoothing projections,

hence of finite rank,

(L18.24) π ∈ Ψ−∞(M/B;E), π2 = π( and π∗ = π if you want.)

Then the range of π is a finite dimensional bundle which sits inside C∞(M/B;E).

Proposition 39. If π1 ∈ Ψ−∞(M/B;E) has range isomorphic to a bundle Ẽ

over B and π2 ∈ Ψ−∞(M/B;F ) has range isomorphic to F̃ over B then

(L18.25) Ψm(B; Ẽ, F̃ ) ∋ A −→ π2Aπ1 ∈ Ψ−∞,m
φ−pt (M ;E,F ),

σ−∞,m(πF Aπ1) = 0 (by definition), βm,−∞(π2Aπ1) = π2σ(A)π1.

Proof. This corresponds to the general inclusion for product-type conormal
distributions

(L18.26) Im(X,Y ;E) ⊂ I−∞,m(X,Y,Z;E).

�
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I have inserted smoothing operators in (L18.25) ‘compressing’ the pseudodif-
ferential operator on the base so that it acts on a finite subbundle on the fibres
because I felt this was clearer in the application below. One can instead consider
an operator on the base as acting on the lifted bundles and then one arrives at

Proposition 40. For any fibration of compact manifolds there is a natural
inclusion

(L18.27) Ψm(B;E,F ) ⊂ Ψm,0(M ;φ∗E, φ∗F ), σm,0(A) = σm(A), β0,m = σm(A).

L18.6. Connection.

Definition 8. A connection on a fibration is a choice of complementary bundle
to T (M/B) ⊂ TM where

(L18.28) Tp(M/B) =
{

v ∈ TpM ; v is tangent to Zφ(p) = φ−1(φ(p))
}

.

The complement corresponding to a connection is necessarily isomorphic to the
lift of the tangent bundle to the base, φ∗(TB), corresponding to the short exact
sequence

(L18.29) T (M/B) −→ TM −→ φ∗TB.

Thus a connection is a splitting of (L1.2) as a sequence of bundles over M.

L18.7. Tensor product construction. Finally, with this ammuntion (un-
verified as a lot of it is) we come to the main construction of Atiyah and Singer, at
least from this point of view.

Proposition 41. If B ∈ Ψ0(M/B;E+, E−) is an elliptic family with trivial
index bundle of rank 1 – more specifically which is surjective and has null bundle
trivial of rank 1 – then for any elliptic operator A ∈ Ψ0(B;F+, F−) (having chosen
inner products and densities) the operator

(L18.30) PA = A⊗B =

(

B 0
πnull(B)Aπnull(B) B∗

)

∈ Ψ0,0
φ−pt(M ;H+,H−),

H+ = E+ ⊗ F+ ⊕ E− ⊗ F−, H− = E+ ⊗ F− ⊕ E− ⊗ F+

is elliptic with

(L18.31) ind(A⊗B) = ind(A)

and PA is deformable, through fully elliptic elements of Ψ0,0
φ−pt(M ;H+,H−) to an

element

(L18.32) Ã ∈ Ψ0(M ;H+,H−), σ(Ã) =

(

χ1σ0(B) −χ2σ0(A)∗

χ2σ0(A) χ1σ0(B
∗)

)

where χi ∈ C
∞(S∗M) form a partition of unity subordinate to the cover.

The operator PA can be thought of as the ‘Clifford tensor product’ of A and B.
How are we going to use this? Given A ∈ Ψm(B; E) (where I will start using

‘superbundle’ notation, with E = (E+, E−) and B acting between them) then given
an embedding B →֒ S

N we may take a normal fibration to B. The normal bundle
NB is itself is a bundle over B and if we take its 1-point compactification 1NB we
get a fibration over B. The result above is applied to lift A to a pseudodifferential
operator on 1NB with the same index (and the ‘same’ symbol in the sense of
(L18.32). We can actually arrange that the lifted operator is completely trivial
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near the section ‘at infinity’ of the 1-point compactification and so extend it to S
N ,

to be trivial outside the collar neighbourhood of B. This effectively reduces the
index problem to S

N , we we can solve it using Bott periodicity.

18+. Addenda to Lecture 18

18+.1. Fredholm condition and ellipticity. In the general mixed order
case Sobolev spaces are needed to characterize ellipticity.

Proposition 42. If A ∈ Ψ0,0(M ;E,F ) then A is Fredholm as a map A :
L2(M ;E) −→ L2(M ;F ) if and only if it is fully elliptic.

18+.2. Proof of Proposition 40.




