
CHAPTER 17

Product-type conormal distributions

Lecture 17: 15 November, 2005

The aim today is to complete the definition of the spaces of product-type conor-
mal distributions, Im,m′

(X,Y,Z;E) where Z ⊂ Y ⊂ X are embedded compact
submanifolds (of positive codimension!) As for the case where Z is absent, we shall
find symbol maps which capture the leading singularity. Here there are two symbol
maps, one corresponding to singularities on Z associated, perhaps unfortunately,
with the first order m and the second one associated with the second order m′ and
the singularity on Y (which does include Z but the singularities captured by this
second symbol are only those ‘conormal to Y ).’

The idea, as for Im(X,Y ;E), is to reduce to the case of the normal bundle to
Y. Here, however it is useful to discuss first the normal bundle to Z in X and how
it is related to Y.

The most significant difference between the old spaces Im(X,Y ;E) and the

new Im,m′

(X,Y,Z;E) is that the symbol map for Y itself takes values in conormal
distributions. Recall that the old symbol map was

(L17.1) σm : Im′

(X,Y ;E) −→ C∞(SN∗Y ;EY ⊗N−m′)

where SN∗Y is the sphere bundle (thought of as the compactifying surface at
infinity for N∗Y ) of the conormal bundle to Y in X. In the present case this has a
submanifold corresponding to Z, namely

(L17.2) SN∗
ZY =

⋃

z∈Z

SN∗
z Y ⊂ SN∗Z

just the union of the fibres over Z, i.e. the restriction of the bundle to Z; as
indicated in (L17.2) this is a subbundle of the conormal bundle to Z itself. Then
our modified ‘Y -symbol’ is to be part of a short exact sequence

(L17.3)

Im,m′
−1(X,Y,Z;E) →֒ Im,m′

(X,Y,Z;E)
σY−→ Im(SN∗Y, SN∗

ZY ;EY ⊗N−m′),

σY = σY,m,m′ .

There should be a picture here.
The other symbol, the Z-symbol, is more like the previous one

(L17.4) σm : Im(X,Z;E) −→ C∞(SN∗Z;EZ ⊗N−m).

The extra singularity still shows up in the replacement for this map, in that SN∗Z is
to be replaced by the part of the boundary of the relative compactification N∗

ZY N∗Z

0.7E; Revised: 29-11-2006; Run: November 29, 2006

139



140 17. PRODUCT-TYPE CONORMAL DISTRIBUTIONS

which corresponds to it under the ‘blow-down map’

(L17.5) β : N∗

ZY N∗Z −→ N∗Z

discussed last time. I denoted the ‘lift’ or ‘proper transform’ of the boundary,
SN∗Z, of the radial compactification under β as [SN∗Z, SN∗

ZY ]. Note that this is
not the preimage under β. Rather it is the closure of the preimage of SN∗Z\SN∗

ZY.

The notation [X,Y ] makes sense for any embedded submanifold of any manifold,
but I am using it here without full explanantion – I will add something to the
addenda about this. So the modified form of the symbol map for Z becomes the
short exact sequence

(L17.6) Im−1,m′

(X,Y,Z;E) →֒ Im,m′

(X,Y,Z;E)
σ

−→ C∞([SN∗Z, SN∗
ZY ];EZ ⊗N−m,−m′), σ = σY,m,m′ .

So, in this new setting, the Z-symbol is a smooth function (or section of a trivial
line bundle) over a compact manifold with boundary.

The total symbol is the combination of these two. Even though each of these
symbols is surjective there is a compatibility condition between them. Namely the
symbol for Z in (L17.6) restricts to the boundary of the blown-up manifold to define
the ‘corner symbol’

(L17.7) σY,m,m′

∣

∣

S∗N(SN∗

Z
Y )
, ∂[SN∗Z, SN∗

ZY ] ≡ S∗N(SN∗
ZY ).

Here S∗N(SN∗
ZY ) is the sphere bundle of the conormal bundle to SN∗

ZY as a
submanifold of SN∗Y. On the other hand, this is exactly where the symbol of an
element of the image of σY,m,m′ lives. The compatibility condition between the two
symbols is then precisely

(L17.8) γm,m′(u) = σY,m,m′(u)
∣

∣

S∗N(SN∗

Z
Y )

= σm(σY,m,m′(u)).

That is, together these two maps give one joint symbol map giving a short exact
sequence

(L17.9) Im−1,m′
−1(X,Y,Z;E) →֒ Im,m′

(X,Y,Z;E)
σm,m′

−→ Jm,m′

(Y,Z;E)

Jm,m′

(Y,Z;E) =
{

(a, v); a ∈ C∞([SN∗Z, SN∗
ZY ];EZ ⊗N−m,−m′),

v ∈ Im(SN∗Y, SN∗
ZY ;EY ⊗N−m′) s.t. a

∣

∣

S∗N(SN∗

Z
Y )

= σm(v)
}

.

This does capture the ‘full leading singularity’ because

(L17.10)
⋂

k

Im−k,m′
−k(X,Y,Z;E) = C∞(X;E)

so in an iterative argument one would expect to finish up with smooth errors if all
went well.

Note that we can also think in terms of the corner symbol in (L17.8) as being
another symbol map. It corresponds to the short exact sequence

(L17.11) Im,m′
−1(X,Y,Z;E) + Im−1,m′

(X,Y,Z;E) →֒ Im,m′

(X,Y,Z;E)
γm,m′

−→ C∞(SN∗(SN∗
ZY );EZ ⊗N−m,−m′).
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So, it remains to define the spaces Im,m′

(X,Y,Z;E) and prove all these things.
For the most part this goes through following the earlier model for conormal dis-
tributions with respect to a single submanifold. I will therefore concentrate on the
new twists which arise and relegate many of the proofs to the addenda.

We start with the model case where Z is a point and Y is a linear subspace
of Euclidean space, {0} ⊂ R

k ⊂ R
n. Now, last time I recalled the definition of the

relative compactification V W where V ⊂W is a linear subspace of a vector space.
We want to consider it here for the dual spaces. Thus V = (Rk)◦ ⊂ R

n = W is the
inclusion R

n−k ⊂ R
n. Recall that there is a smooth map

(L17.12) V W −→ W

so C∞(V W ) is ‘bigger than’ C∞(W ) in the sense that the latter is naturally included
in the former. With these identifications we defined

(L17.13) I
m,m′

S
(Rn,Rk, {0}) = F−1

(

ρ−M
W ρ−M ′

V C∞(V W )
)

, M = m, M ′ = m′.

Here the defining function for the boundary of W pulls back under the map (L17.12)
to ρV ρW where both are elements of C∞(V W ), the one, ρW , defining the ‘main face’
at infinity (the one whose image is the whole of the boundary of W ) and the other
defining the ‘product-type’ face which corresponds to V, hence the notation ρV .

For simiplicity of notation, set m = m′ = 0 so that the powers in (L17.13)

are removed. In this case the two symbols of u ∈ I
0,0
S

(Rn,Rk, {0}) are just the
restrictions of F(u) to the two faces ρW = 0 and ρV = 0. Referring back to the
defining map for V W in (L16.11) to see what these two boundary faces are with
the compactification given by the closure of the image in (L16.12), corresponding
to a choice of splitting W = V × U. Here

(L17.14) ρW = t, ρV = s.

From (L16.12) we see that there is an identification

(L17.15) V W ⊃ {s = 0} −→ U × SV, SV = ∂V .

At least in coordinates, the ‘Y -symbol’ can therefore first be identified with an
(arbitrary) element of C∞(U×SV ). If we now take the inverse Fourier transform on
U we will get an element of Im(U ′, {0}) (ignoring as usual niceties about the shifts
in the order of conormal distributions). Since V is the dual of R

k, we may identify
the dual, U ′ of U with V and hence identify SV × U ′ with SN∗Y = R

k × S
n−k−1,

the sphere bundle of the conormal bundle of Y = R
k in R

n. With this identification,
which we have to check behaves properly under linear transformations,

(L17.16) σY : Im,m′

S
(Rn,Rk, {0}) ∋ u 7−→ a = F(u)

∣

∣

s=0
−→

F−1
u (a) ∈ C∞(Sn−k−1; Im′

S (Rk, {0}) = Im′

S (Rk × S
n−k−1, {0} × S

n−k−1)

is exactly what we have anticipated for the ‘Y -symbol’. It is a conormal distribution
on the spherical conormal bundle to Y with respect to the submanifold given by
the fibre over Z = {0}.

We have already shown that any linear transformation of a real vector space
W which preserves a subspace V ⊂ W lifts to a diffeomorphism of [V ]W. If L ∈
GL(n,R) preserves the subspace R

k = R
k × {0} ⊂ R

n then for any u ∈ S ′(Rn),

(L17.17) F(L∗u) = |det(L)|−1(Lt)−1F(u).
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Since the transpose preserves the annihlator (Rk)◦ ⊂ R
n, we see directly from the

definition that
(L17.18)

L∗ : Im,m′

S
(Rn,Rk, {0}) −→ I

m,m′

S
(Rn,Rk, {0}) if L(Rk) = R

k, L ∈ GL(n,R).

Thus we do have linear invariance in the sense that under a general linear transfor-
mation

(L17.19) L∗ : Im,m′

S
(Rn,Rk, {0}) −→ I

m,m′

S
(Rn, L−1

R
k, {0}), L ∈ GL(n,R).

The other symbol map is surjective, essentially by definition, onto the space
C∞([SW,SV ]) where this manifold with boundary, which looks like SU × V , is
identified (by definition) with {t = 0} in V W. Then the properties of the symbol
maps corresponding to (L17.3) and (L17.6) are the exactness of
(L17.20)

I
0,−1
S

(Rn,Rk, {0}) →֒ I
0,0
S

(Rn,Rk, {0})
σY−→ Im′

S (Rk × S
n−k−1, {0} × S

n−k−1)

and

(L17.21) I
−1,0
S

(Rn,Rk, {0}) →֒ I
0,0
S

(Rn,Rk, {0})
σZ−→ C∞([SW,SV ]).

Namely, in each case, a function in C∞(V W ) is in ρY C∞(V W ) or ρZC
∞(V W ) if

and only if it vanish on s = ρY = 0 or t = ρV = 0 respectively, and this means
exactly that the restriction of the function to that boundary face vanishes.

The joint symbol γ(u) is obtained simply by combining of these two symbols.
The only compatibility condition between them is that the have the same restriction
to the corner of V W, which is SU × SV and which defines the ‘corner symbol’
γ(u) ∈ C∞(SU × SV ). The vanishing of the joint symbol means that F(u) can be
written as stb with b smooth giving the analogue of (L17.9) in this vector space
setting:-

(L17.22) I
m−1,m′

−1
S

(Rn,Rk, {0}) →֒ Im,m′

(Rn,Rk, {0})
σ0,0

−→ J
0,0
S

(Rn,Rk)

J
0,0
S

(Rn,Rk) =
{

(a, v); a ∈ C∞([SW,SV ]),

v ∈ Im(Rk × S
n−k−1, {0} × S

n−k−1) s.t. a
∣

∣

SU×SV
= σ(v)

}

.

The vanishing of the corner symbol γ implies that F(u) ∈ C∞(V W ) can be
written as the sum of a smooth function vanishing at t = 0 and one vanishing at
s = 0 (check this yourself!) giving the analogue of (L17.11)
(L17.23)

I
0,−1
S

(Rn,Rk, {0}) + I
−1,0
S

(Rn,Rk, {0}) →֒ I
0,0
S

(Rn,Rk, {0})
γ0,0

−→ C∞(SU × SV ).

Note that by iterative use of the ‘Z-symbol’ one would expect errors in

(L17.24)
⋂

k

I
m−k,m′

S
(Rn,Rk, {0}) = Im′

S (Rn,Rk) = S(Rk; Im′

S (Rn−k, {0}).

To see this equality note first that the middle space needs some comment even as
regards its definition – simply because I did not define a ‘tempered’ conormal space
in the general case of a subspace of a vector space (because I did not need it).
However, the last equality serves as a reasonable definition of the middle space. If
we take variables in R

n = R
k
y × R

n−k
z then taking the Fourier transform to realize
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the conormal distributions at the origin in R
n−k as symbols we get

(L17.25)

Fz→ζS(Rk
y ; Im′

S (Rn−k
z , {0})) = S(Rk

y ; ρ−m′

C∞(Rn−k
ζ )) = ρ∞y ρ

−m′

ζ C∞(Rk
y × R

n−k
ζ ).

Now, taking the Fourier transform in y gives again Schwartz functions in the dual
variable η. Thus the right two spaces in (L17.24) can be identified under Fourier
transform in all variables with

(L17.26) ρ∞η ρ
−m′

ζ C∞(Rk
η × R

n−k
ζ ).

Thus, it remains to see that this is the same as the space on the left in (L17.24).
In fact, by definition, Fourier transform gives a symbol in

(L17.27) ρ−m′

V ρ∞W C∞(V W )

so it remains to see that these two spaces are the same (as spaces of functions on
R

n
η,ζ). This is Lemma 26 from last time (unproven then, with proof in the addenda).

As an intermediate case (which I did not have time to include in the lecture)
suppose that N −→ Z is a vector bundle over a compact manifold Z. I am thinking
here of the normal bundle to Z as a submanifold of some compact manifold X. Then
we replace Y by its linearization in N, so suppose that M ⊂ N is a subbundle over
Z. To fit a little with the earlier notation, let W be the dual bundle of N and V the
annihilator ofM inW. Then, for any bundle E over Z we wish to define, and explore

the properties of, Im,m′

S
(N,M,Z;E). This is rather easy (which is why I skipped it),

since we may always take local trivializations of the bundle N in which it becomes
R

n×O over an open subset O ⊂ Z with the identification such that M = R
k×O. If

we assume that E is trivial over O as well, then we are reduced to smooth functions

on O with values in (the direct sum of rankE copies of) Im,m′

S
(Rn,Rk, {0}). From

the linear invariance of Im,m′

S
(Rn,Rk, {0}) the result space is independent of choice

of trivialization and patches to give Im,m′

S
(N,M,Z;E).

We can alternatively proceed more directly, by taking the fibre Fourier trans-
form on N and defining more directly
(L17.28)

I
m,m′

S
(N,M,Z;E) = F−1

fib

(

ρ−m′

V ρ−m
W C∞(V W ;E ⊗ Ωfib)

)

, W = N∗, V = M◦.

Here we just observe that the fibre-by-fibre relative compactification gives a well-
defined compact manifold with corners, fibred over Z so this makes good sense.
Clearly this gives the same space as before. The second definition has the advantage
that the symbol maps discussed above carry over directly and we get the analogous
short exact sequences, except that everything is now fibred over Z.

Having briefly discussed the case of a bundle over Z we now consider the case
of a bundle N over Y, a compact manifold with a given submanifold Z ⊂ Y. Of
course, N will be the normal bundle for Y in a manifold X. Now the set up is
completely global in Y and we will define the space by reduction to the previous
case.

Lemma 28. For a real vector bundle N over Y any submanifold Z ⊂ Y, identifed

as a subset of the zero section of N, has a normal fibration F in N in which the

image of the zero section of N lies in a subbundle MY ⊂ NZ.
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Given such a normal fibration, we can set, for any vector bundle over Y,

(L17.29) I
m,m′

S
(N,Y, Z;E) = Im′

S (N,Y ;E)

+ F ∗{u ∈ I
m,m′

S
(NZ,MY , Z;EF ); supp(u) ⊂ D(F ) ⊂ NZ}.

Here D(F ) is the open neighbourhood of Z in NZ which is the image of F and
EF is a bundle over Z with an identification to E over D′(F ), the domain of F. Of
course to use this as a definition we need to check that the right side is independent
of the normal fibration. This follows the usual pattern and will be included in the
addenda (when I get around to it).

Naturally we also wish to show that the symbol maps extend to these spaces
and have the properties which will lead to those displayed above. In fact we are
now in the general case, except for more coordinate invariance. That is, we need
to show that we can set

(L17.30) Im,m′

(X,Y,Z;E) = C∞(X;E)

+G∗{u ∈ I
m,m′

S
(NY, Y, Z;EY ); supp(u) ⊂ D(F ) ⊂ NY }

where G is a normal fibration of Y in X with the usual identifications of bundles.
Then the properties will reduce to the case in (L17.29). The main issues are to
show that the symbol maps are well-defined, that they are surjective and that they
have the null spaces as required to give the short exact sequences. For the symbol
associated to Z this is rather clear. We already know it is unaffected by what
happens away from Z so, apart from coordinate invariance, it drops back to the
case (L17.28) of a bundle over Z where we already understand it.

So, it is more productive to talk about the Y symbol. This is global so needs
to be discussed carefully. To see that it is well-defined we can proceed to make
the decomposition in (L17.29) a little more definitive. Thus, we can choose a
function ψ ∈ C∞

c (N) which is equal to one in a neighbourhood of Z and which has
support in the domain of the normal fibration of Z in N. Then we the decomposition
u = ψu+(1−ψ)u gives and element in Im′

(N,Y ;E) supported away from Z and an

element in v ∈ I
m,m′

S
(NZ,MY , Z;EF ) with compact support such that ψu = F ∗v.

We may then define the symbol as the sum

(L17.31) σY (u) = σ((1 − ψ)u) + (F∗)
∗σY (v).

These may both be directly interpreted as elements of the expected space

(L17.32) Im(SN∗Y, SN∗
ZY ;EY ⊗N−m′).

Indeed the first term in (L17.31) is a smooth section of this bundle supported away
from Z and the second is in this space from the discussion above. To prove that
the result is well-defined we only need check that change of ψ does not affect the
result. This just means showing that if u is supported away from Z but in the
domain of the normal fibration then the two symbols are the same. This however
follows from the definitions, which are the same away from Z.

This argument also shows surjectivity of σY .Namely the second term in (L17.31)
is of the form ψ(F∗)

∗σY (v′) and hence every conormal distribution arises this way.
Conversely, if σY (u) = 0 then u is certianly of order m′ − 1 away from Z. Hence

subtracting a term in Im′
−1(X,Y ;E) with support away from Z replaces u by a

distribution supported in the domain of the normal fibration. Since its symbol can



17+. ADDENDA TO LECTURE 17 145

be computed from the bundle model and it vanishes by hypothesis, it must lie in
Im,m′

−1(X,Y,Z;E) and this proves the exactness of (L17.3).
The other claims may be established in much the same way.
The two inclusion which can be seen directly from the definition of product-type

symbols are

(L17.33)
Im(X,Z;E) ⊂ Im,m(X,Y,Z;E) for any Y ⊃ Z,

Im′

(Y ;E) ⊂ I−∞,m′

for any Z ⊂ Y.

There is a third inclusion which I will use below. Namely (I will put something
about this back in the addenda) for any submanifold Y ⊂ X of any manifold
(compact for simplicity of notation) there is an inclusion

(L17.34) C−∞(Y ;EY ⊗ Ω(N∗Y )) ∋ v −→ v ⊗ δY ∈ C−∞(X;E)

corresponding to ‘tensoring with a delta function in the normal direction’ and the
density factor is there because the delta ‘function’ wants to be a density in the
normal direction (and Ω stands for the absolute value of the maximal exterior
power of the dual of any real bundle). In local coordinates in which Y is given by
z1 = · · · = zn−k = 0, the map (L17.34) is just

(L17.35) v(y) 7−→ v(y)δ(z1) . . . δ(zn−k).

I leave you to check that it is independent of coordinates.
Then there is an inclusion

(L17.36) Im′

(Y,Z;EY ) −→ I0,m′

(X,Y,Z;E)

which extends to the more obvious inclusion

(L17.37) C∞(Y ;EY ⊗ Ω(N∗Y )) −→ I0(X,Y ;E)

and in which the ‘0’ arises as the order of the delta function as a conormal distri-
bution.

17+. Addenda to Lecture 17

17+.1. Linear invariance.




