
CHAPTER 16

Product-type symbols

Lecture 16: 10 November, 2005

Last time I described the space of Ψm(M/B;E,F ) of pseudodifferential op-
erators acting on the fibres of a fibration φ : M −→ B. This is defined directly
in terms of conormal distributions, as Im′

(M2
φ,Diag;Hom(E,F ) ⊗ ΩR) where M2

φ

is the fibre diagonal, the set of pairs (m,m′) ∈ M2 such that φ(m) = φ(m′) and
Diag is the diagonal of M2, so the set of pairs {(m,m);m ∈ M}. Such an operator
defines a map

(L16.1) Ψm(M/B;E,F ) ∋ A : C∞(M ;E) −→ C∞(M ;F ),

just as pseudodifferential operators on M do. It therefore has a Schwartz kernel on
M × M. This is easily seen to be, in terms of a local trivialization of φ

(L16.2) KA(m,m′) = Ã(m,m′)δ(b − b′)

where Ã is the conormal distribution defining (and usually identified with) A. Thus
there are two submanifolds of M2 in the picture here, namely M2

φ and Diag . These
are nested as in the simple picture

•
Diag

δ(b − b′) ⊗ Ã

M2
φ

Thus, in this simplified picture the kernels of elements of Ψm(M/B;E,F ) are
singular all along the bigger submanifold, with a delta-singularity normal to it
whereas the elements of Ψm(M ;E,F ) have conormal singularities just at the smaller
submanifold, and so are smooth outside it. It is then rather easy to see the following
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130 16. PRODUCT-TYPE SYMBOLS

Exercise 20. Show that the elements of Ψm(M ;E,F ) ∩ Ψm(M/B;E,F ) for
a fibration with base and fibre of positive dimension are the fibrewise differential
operators of order m (so for instance this intersection is empty if m ∈ R \ N0).

For arguments in the proof of the index theorem, and for other reasons too, I
want to define a larger class of ‘pseudodifferential operators of product type’ with
respect to any fibration which is to include both the fibrewise pseudodifferential
operators and the usual pseudodifferential operators on the total space of the fibra-
tion. To do this we return to the beginning and use the same pattern of definition
as before. Namely, the operators will be defined, through their Schwartz kernels,
in terms of a corresponding class of product-type conormal distributions

(L16.3) Ψm,m′

pt−φ(M ;E,F ) = Im−N,m′−N ′

(M2,M2
φ,Diag;Hom(E,F ) ⊗ ΩR).

Here m is the ‘main order’, m′ is the ‘fibre order’ and on the right I am using as
yet undefined notation for the conormal distibutions with respect to a nested pair
of submanifolds; N and N ′ are dimension shifts as before.

So, to define (L16.3) we wish to define

(L16.4) Im,m′

(X,Y,Z;E) ⊂ C−∞(X;E)

the space of (product-type) conormal distributions (distributional sections of the
bundle E) with respect to two embedded submanifolds

(L16.5) Z ⊂ Y ⊂ X.

Here, somewhat confusingly, m is the ‘order at Z’ whereas m′ is the ‘order at Y .’
Following backwards through the previous argument, to define (L16.4) we will

want to carefully discuss a model case which we take to be a vector space R
n with

two subspaces. The variables along the smaller manifold Z in (L16.4) are intended
to be ‘smooth parameters’ so we can take the smaller subspace to be {0} and so
consider as the model for a nested pair of submanifolds

(L16.6) {0} ⊂ R
k
y ⊂ R

n
y,z.

Here (y, z) are linear coordinates, with z = 0 being the larger of the subspaces so
the y = (y1, . . . , yk) are coordinates in it.

So now, we want to define

(L16.7) Im,m′

S (Rn, Rk, {0})

where the subscript S is supposed to mean that the elements will have some sort of
‘rapid decay’ at infinity to compensate for the fact that R

n is not compact. Let me
try to motivate the definition a little more. We want these spaces (for appropriate
orders) to include both

(L16.8) Im
S (Rn, {0}) and S(Rk

y ; Im′

S (Rn−k, {0}))

which we defined before, and the latter space being a natural candidate for the
space of conormal distributions associated to R

k with ‘rapid decrease at infinity’.
Now, the first space in (L16.8) is by definition F−1ρ−M (Rn), in terms of the

radial compactification of R
n, which is a ball (which is where we started). The

second space is defined by Fourier (inverse) transform on R
k so is

F−1
ζ→z

(

S(Rk; ρ−M ′

C∞(Rn−k
ζ))

)

,
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To compare these two it is natural to take the Fourier transform in the y variables
in the second space as well; since it is just Schwartz in these variables this gives the
same space again.

So, assuming that we want to define our new space, (L16.7), as the inverse
Fourier transform of some class of ‘symbols’ and we want it to ‘include’ (for appro-
priate orders) the two older spaces then the symbol space should include

(L16.9) ρ−M (Rn
η,ζ) and S(Rk

η; ρ−M ′

C∞(Rn−k
ζ)).

One of the points I am trying to make in this course is that in such circumstances
one should look for an appropriate compactification, of R

n in this case. I already
briefly describe the ‘correct’ compactification in the addenda to Lecture 1, when I
talked mostly about the radial compactification of vector space. The one I have in
mind is the ‘relative’ compactification of a vector space with respect to a subspace.
In this case

(L16.10) R
n →֒ V W, W = R

n, V = R
n−k = {η = 0} ⊂ R

n.

Note that we have taken the Fourier transforms, so the symbols are defined on
the dual of the original space. So the well-defined subspace is the annihilator of
R

k
y ⊂ R

n, i.e. R
n−k
ζ = {η = 0} ⊂ R

n.

Let me recall the definition of this compactification from (1+.30), changing
(and reversing the order of) the variables to fit (L16.10)

(L16.11) RV : W ∋ w = (η, ζ) 7−→ (t, s, η′, ζ ′) =

(
1

(1 + |η|2)
1

2

,
(1 + |η|2)

1

2

(1 + |η|2 + |ζ|2)
1

2

,
η

(1 + |η|2)
1

2

,
ζ

(1 + |η|2 + |ζ|2)
1

2

) ∈ R
2 × W.

As noted there, the image lies in the compact manifold with corners (product of
two half-spheres)

(L16.12) V W = {(t, s, η′, ζ ′) ∈ R
2+n; t2 + |η′|2 = 1 = s2 + |ζ ′|2, t ≥ 0, s ≥ 0}.

In fact the image is precisely the interior (s, t > 0) since the inverse there can be
written

(L16.13) η = η′/t, ζ = ζ ′/st,

that is, (L16.11) is a diffeomorphism onto the interior of (L16.12) which is therefore
a compactification.

Our symbol spaces will be the same type as before, just ‘Laurent’ functions,
meaning smooth functions except for a (possibly non-integral) overall power be-
haviour at each boundary face. So, we arrive at the basic definition of (model)
product-type conormal distributions

(L16.14) Im,m′

S (Rn, Rk
y × {0}, {0}) = F−1(t−Ms−M ′

C∞(V W ),

W = R
n
η,ζ , V = {η = 0}, M = m, M ′ = m′.

To check that this is consistent with what I claim above, we want to know that

u ∈ Im,m′

S (Rn, Rk
y × {0}, {0}) =⇒ u

∣

∣

(y,z) 6=0
∈ Im(Rn \ {0}, Rk \ {0}),(L16.15)

Im
S (Rn, {0}) ⊂ Im,m+(Rn, Rk, {0}),(L16.16)

S(Rk
y ; Im′

(Rn−k, {0}) ⊂ I−∞,m′

(Rn, Rl, {0}),(L16.17)
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Before trying to check these results and more, we need to look at the prop-
erties of the relative compactification. In particular we want to show some linear
invariance as a prelude to eventual coordinate invariance, as in Lemma 2. The
definition itself corresponds to choosing a transversal subspace to V and writing W
as a product

(L16.18) W = V × U, V = {ζ = 0}, U = {η = 0}.

We want to show that, up to a diffeomorphism, V W does not depend on the choice
of U, otherwise the notation is defective (to say the least)!

Points of V W fall into four classes, those in the interior, those at which t = 0
but s > 0, those at which t > 0 but s = 0 and those at which t = 0, s = 0. We
can introduce local coordinates near each such point, although it is simpler just to
introduct a local generating system (i.e. a set of functions which are smooth and
which contain a coordinate system). We can safely ignore the interior, since this is
just R

n with global coordinates η, ζ. As in (1+.35), (1+.36) observe that

Near t = 0, s > 0,
1

|η|
,

ζ

|η|
,

η

|η|
generate,(L16.19)

near t > 0, s = 0,
1

|ζ|
,

ζ

|ζ|
, η generate(L16.20)

and near t = 0, s = 0,
1

|η|
,
|η|

|ζ|
,

η

|η|
,

ζ

|ζ|
generate(L16.21)

(where ‘generate’ can be read as ‘are smooth and generate’).
In fact, to see the first of these, observe that t = 0 implies |η| = ∞, meaning

that in a sufficiently small neighourhood (in V W ) of such a point |η| > R for any
preassigned R (R > 10 say below.) Since s > 0 at the point, s ≥ s0 > 0 in a
neighbourhood for some s0 > 0, so

(L16.22) s = (1 +
|ζ|2

1 + |η|2
)−

1

2 > s0 =⇒ |ζ| < C|η|

where C > 0 depends on R and s0, especially the latter. Thus as we approach
the first type of boundary point, |η| → ∞, maybe |ζ| → ∞ but no faster than a
multiple of |η| and (L16.19) follows since we can replace t by 1/|η|, s by |ζ|/|η| etc.
Similarly at the second type of boundary point t ≥ t0 > 0 in some neighbourhood
so |η| is bounded above, i.e. η is finite. Hence |ζ| → ∞ as we approach the point,
since s → 0. Thus we can replace (t, η′) by η itself, then s by 1/|ζ| and ζ ′ by ζ/|ζ|,
giving (L16.20). In the third case, of a point on the corner, along any sequence
approaching such a point, |η| → ∞, since t → 0 and |ζ| → ∞ since s → 0 (using
(L16.22)). In fact |ζ|/|η| → ∞ for the same reason. From this (L16.21) follows.

Note that near any particular point on the boundary we just need to drop one,
or in the last case two, of the ‘spherical’ variables to get a coordinate system.

As noted back in (1+.34) this allows us to see which of the constant and linear
vector fields lift. Namely

(L16.23) ∂ηi
, ∂ζk

, ηi∂ζk
, ζl∂ζk

, ηi∂ηj

all lift to be smooth on V W (for the obvious range of the indices) but ζl∂ηi
does

not. To see this, we can use homogeneity in terms of the coordinates derived from
the generating functions. For instance, look at the corner and denote the first two
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functions in (L16.21) as r and R and an appropriate choice of coordinates from the
spherical variables as ω. Then each of the vector fields lifts to be of the form

(L16.24) a(r,R, ω)∂r + b(r,R, ω)∂R + V (r,R, ω)

where V is a vector field in the ω’s. The vector field is certainly smooth in r > 0,
R > 0 since that is the interior. Moreover the scaling r → λr, λ > 0 corresponds
precisely to η → η/λ and ζ → ζ/λ. Under this combined scaling, all of the vector
fields in (L16.23) are homogeneous, or degrees 0 or 1 (as is ζl∂ηi

). On the other hand
the scaling R → λR (with other variables fixed) corresponds precisely to ζ → ζ/λ.
Under this scaling all the vector fields in (L16.23) are homogeneous of degrees 0 or
1 still (whereas ζl∂ηi

is homogeneous of degree −1). This homogeneity translates to
homogeneity of the individual terms in (L16.24) and shows that the coefficients are
all homogeneous of positive degrees, hence the vector fields lift to be smooth (and
if you look a little more carefully, ζl∂ηi

definitely does not.) They are all tangent
to both boundary hypersurfaces. I have just been talking about a neighbourhood
of the corner but the other regions of the boundary are similar with the discussion
simpler (basically one of these homogeneities persists at each).

This proves Lemma 2. From (L16.11) we see immediately that the definition
only depends on V, U, and the choice of Euclidean metrics on these spaces. That is,
the group O(n− k)×O(k), which acts on W once the decomposition (L16.18) and
choice of Euclidean metrics is fixed, lifts to act smoothly on V W, namely (Oη, Oζ)
acts through (t, s, η′, ζ ′) 7−→ (t, s, Oηη′, Oζζ

′). To show that the whole group

(L16.25) {A ∈ GL(W );AV = V } lifts to act smoothly on V W

lifts to act smoothly on V W observe that in terms of a splitting W = V ⊕ U, this
group consists of the lower triangular block matrices

(L16.26)

(

A′ 0
S A′′

)

, A′ ∈ GL(U), A′′ ∈ GL(V ), S ∈ hom(U, V ).

We have already seen the invariance under the block diagonal, orthogonal, matrices
and modulo those (needed just to make sure that A′ and A′′ are both positively
oriented) such a matrix can be connected to the identity in the group. Thus, it can
be written as a product of exponentials of elements of the Lie algebra. However,
the Lie algebra is spanned by the linear vector fields in (L16.23) so these exponen-
tials are given by the integration of smooth vector fields on V W and so all lift to
diffeomorphisms.

Thus in fact the definition of V W does not depend on the choices made in the
explicit map (L16.11). This justifies the notation V W for the compactification of a
vector space W with respect to a subspace V. Note that there really is asymmetry
in the definition, as there has to be if it is independent of the choice of U, the
transversal, but not of V. One can also see this in terms of the important map back
to the radial compactification.

Lemma 24. The identification of the interiors of V W and W with W extends
to a smooth surjective map

(L16.27) β : V W −→ W.
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Proof. We only need to compare the compactification map (L16.11) with that
corresponding to the radial compactification expressed in terms of these variables

(L16.28) R : W ∋ w = (η, ζ) 7−→ (τ, η′′, ζ ′′) =

(
1

(1 + |η|2 + |ζ|2)
1

2

,
η

(1 + |η|2 + |ζ|2)
1

2

,
ζ

(1 + |η|2 + |ζ|2)
1

2

) ∈ R × W.

Clearly

(L16.29) τ = st, η′′ = sη′, ζ ′′ = ζ ′

which shows that the map (L16.27) exists and is smooth. �

Notice from (L16.29) that β maps the boundary hypersurface {t = 0, s > 0} in
V W onto the boundary of W except for the part ∂V where we regard V ⊂ W. This
is actually the alternative construction of V W which I will record here even though
I have not defined the notion of blow up. It means ‘introduce polar coordinates
around the submanifold.’

Lemma 25. The relative compactification V W is canonically identified with the
manifold obtained by blowing up the boundary ∂V in W (denoted by me [W,∂V ]).

Now we know that the space of (model) product-type conormal distributions
defined by (L16.14) is also invariant under linear transformations which preserve R

k

(as a subspace of R
n) because the Fourier transform converts this to the action of

the transpose, which preserves the annihilator in the dual and we may use Lemma 2
which implies in particular that on the ‘symbolic side’
(L16.30)

A∗
(

t−Ms−M ′

C∞(V W )
)

= t−Ms−M ′

C∞(V W ) ∀ M,M ′ ∈ R (or indeed C).

Recall that the whole thrust of this definition is towards (L16.15) – (L16.17).
So, consider (L16.16) first. This is a consequence of (L16.27) and (L16.29). Namely
we are to show that

(L16.31) u ∈ Im
S (Rn, {0}) =⇒ u ∈ Im,m+

S (Rn, Rk)

where of course this must be true for any choice of k. By definition

(L16.32) û = R∗a, a ∈ ρ−MC∞(W ), W = R
n

and then from (L16.27) and (L16.29) (which shows that β∗ρ = st)

(L16.33) β∗a ∈ t−Ms−MC∞(V W ), V = R
n−k, W = R

n.

However, β is just the canonical extension of the identification of the interiors so of
course, βRV = R since they are equal on the interiors. Thus(L16.33) and (L16.32)
mean that

(L16.34) û = R∗
V b, b ∈ t−Ms−MC∞(V W )

which is (L16.31) and hence (L16.16) (for the moment all the order-normalizations
are messed up or omitted here).

Next consider (L16.17). We want to do much the same as (L16.33) but we do
not quite have the right map (with a little more blow-up technology we could get
it). So, let me proceed more by hand. We already observed in the run up to (L16.9)
that

(L16.35) u ∈ S(Rk
y ; Im

S (Rn−k, {0})) =⇒ û ∈ S(Rk
η; ρ−M

ζ C∞(Rn−k
ζ )).
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Ignoring the factor of ρ−M
ζ for the moment we want to show that (L16.35) implies

that û extends from the interior (i.e. R
n) to be smooth on V W. To do this we can

consider the three regions of the boundary in (L16.19). Near the boundary s = 0,
away from the corner in (L16.20), û is smooth, since it is a smooth function of η

and of the generating functions 1/|ζ| and ζ/|ζ| of R
n−k
ζ . Near the remainder of the

boundary, covered by (L16.19) and (L16.21), |η| → ∞. from (L16.35) we know that
û is uniformly rapidly decreasing as |η| → ∞, i.e.

(L16.36) |û(η, ζ)| ≤ CN |η|−N in |η| > 1.

Since the entries of the Jacobian of the singular changes of variables from ζ/|η| to

ζ/(1 + |ζ|2)
1

2 and 1/(1 + |ζ|2)
1

2 are bounded by powers of |η| it follows that û(η, ζ)
is in fact smooth down to the boundary t = 0 at which it vanishes to infinite order.
That is,

(L16.37) û ∈ t∞s−MC∞(V W ) −→ u ∈ I−∞,m(Rn, Rk, {0}).

Additonal factors of ρζ present no extra problems.
In fact we will later make use of the fact that

Lemma 26. Under the identification as functions on the interior

(L16.38) S(Rk
η; ρ−M

ζ C∞(Rn−k
ζ ) ≡ t∞s−MC∞(V W ), W = R

n, V = R
n−k.

I will prove the partial converse of this, (L16.15) next time and go through
the extension to vector bundles and submanifolds, much as before, leading to the
definition of the pseudodifferential operators through (L16.3).

16+. Addenda to Lecture 16

16+.1. More on the relative compactification. The relative compactifi-
cation V W is given by the map and image in (L16.11) for the vector spaces V and
W in (L16.10). Observe that as well as the map (L16.27) there is a natural map

(16+.39) V W ∋ (t, s, η′, ζ ′) 7−→ (t, η′) ∈ W/V .

Certainly this map is smooth and surjective in the model setting. Furthermore
it follows from the form of the general element of GL(W,V ), i.e. an element of
A ∈ GL(W ) such that A(V ) ⊂ V,

(16+.40) GL(W,V ) ∋ A =

(

A′ 0
Q A′′

)

, A(η, ζ) = (A′η,Qη + A′′ζ)

that the map (16+.39) and the actions of GL(W,V ) and GL(V ) give a commutative
diagram

(16+.41) GL(W,V ) // GL(V )

V W // W/V .

Thus the map (16+.39) is natural.
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Lemma 27. The map (16+.39) is a fibration with fibre diffeomorphic to V .
Although not naturally a product the fibration is trivial and induces a fibration of
the boundary face HW = {t = 0} of V W,

(16+.42) HW −→ S(W/V ) = ∂W/V with fibre diffeomorphic to V .

The other boundary hypersurface, HV = {s = 0} naturally decomposes as a product

(16+.43) HV = SV × W/V , (t, 0, η′, ζ ′) 7−→ ((0, ζ ′), (t, η′)).

Proof. The map (16+.43) corresponds to the quotient of the group GL(W,V )

by the normal subgroup

(

Id 0
∗ Id

)

in (16+.40). Namely it gives a commutative

diagram

(16+.44) GL(W,V ) // GL(V ) × GL(W/V )

BV
oo // SV × W/V

which shows that the product decomposition is natural.
On the other hand in (16+.42), on restriction to HW the off-diagonal part of

GL(W,V ) still acts non-trivially, so the map is only naturally a trivial fibration
(that it is a fibration follows from the explicit form of (16+.42) which presents it
as a product). �

The invariance of these maps shows that they extend directly to the corre-
sponding bundle settings. In the geometric case discussed below, where

(16+.45) Z ⊂ Y ⊂ X

are submanifolds, the vector space W and subspace V are replaced by the bundle
and subbundle

(16+.46) N∗YZ ⊂ N∗Z

with the conormal bundles being relative to X. Note that the quotient N∗Z/N∗
ZY

may be naturally identified with the conormal bundle of Z as a submanifold of Y.
Perhaps I will finally admit a relative notation for normal/conormal bundles and
write

(16+.47) XN∗Z/ XN∗
ZY = YN∗Z.

Then the relative compactification becomes the manifold with corners

(16+.48) N∗YZ N∗Z

which has the two boundary hyersurfaces we can now associate to Z (corresponding
to W above) and Y (corresponding to V ) which are respectively fibred and have a
product-bundle structure:-

(16+.49)

XN∗
z Y HZ

��
YSN∗Z,

HY ≡ YN∗Z ×Z
XSN∗

ZY.
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We shall see later that there is a natural idenfication with the blow up

(16+.50) HZ ≡ [ XSN∗Z, XS∗
ZY ],

of XS∗
ZY as a submanifold of XSN∗Z.




