
CHAPTER 13

Classifying sequence for K-theory

Lecture 13: 1 November, 2005

Today I will discuss some of the consequences of the two homotopies I described
last week.

Recall the second of these results. Let X be a compact manifold and consider

A : X −→ C∞(S; GL(N, C)),

a family of smooth maps, so A ∈ C∞(X×S; GL(N, C)), satisfying the normalization
condition that A(x, 1) = Id for all x ∈ X. We are permitted to stabilize the family
by embedding GL(N, C) in GL(M, C) for M ≥ N. Then for M sufficiently large we
can find a homotopy, which is to say a family At ∈ C

∞(X × [0, 1]t × S; GL(M, C)),
such that A0 = A and

(L13.1) A1(x) = π−(x)e−iθ + π0(x) + π+(x)eiθ

where π−, π0 and π+ are three smooth families of projections which are mutually
commuting and sum to the identity.

L13.1. Numerical index for the circle.

Corollary 5. If P ∈ Ψ0
T (S; CN ) is an elliptic Toeplitz operator, so σ0(P ) ∈

C∞(S; GL(N, C)) then
(L13.2)

ind(P ) = dim(null(P ))− dim(null(P ∗)) =
i

2π

∫

S

Tr

(

σ0(P )−1 dσ0(P )

dθ

)

dθ.

Proof. For a single symbol (i.e. X = {pt}) of the form (L13.1) we can prove
(L13.2) directly. Namely

(L13.3) P = π−L + π0 + π+U

is a Toeplitz operator with this symbol, since L has symobl e−iθ and U has symbol
eiθ. The null space of P is

(L13.4) null(P ) = π−(CN )

and since the adjoint is P ∗ = π−U + π0 + π+L

(L13.5) null(P ∗) = π+(CN ) =⇒ ind(P ) = rank(π−)− rank(π+).

On the other hand, with σ0(P ) given by A1,

(L13.6) A−1
1

dA1

dθ
= −iπ− + iπ+ =⇒

∫

S

Tr

(

A−1
1

dA1

dθ

)

dθ = −2πi ind(P )
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110 13. CLASSIFYING SEQUENCE FOR K-THEORY

which is (L13.2) in this special case.
The homotopy argument shows that every elliptic symbol p ∈ C∞(S; GL(N, C))

normalized by p(1) = Id is stably homotopic to one of the form (L13.1). Setting Q =
p(1) ∈ GL(N, C) it follows that any elliptic operator may be written as a product
P = QP ′ where σ(P ′) satisfies the normalization condition and Q ∈ GL(N, C).
Since Q is an isomorphism, the index of P is equal to the index of P ′. Moreover,
since Q is independent of θ,

(L13.7)

∫

S

Tr

(

σ0(P )−1 dσ0(P )

dθ

)

dθ =

∫

S

Tr

(

σ0(P
′)−1Q−1 dQσ0(P

′)

dθ

)

dθ

=

∫

S

Tr

(

σ0(P
′)−1 dσ0(P

′)

dθ

)

dθ.

Thus, it suffices to prove the index formula for P ′, i.e. to assume the normalization
condition for P. Now, the index of a curve of elliptic operators is constant and we
also know, from Proposition 22, that the right side of (L13.2) is homotopy invariant,
i.e. is constant along a curve of elliptic symbols and holds at the end point. Thus
(L13.2) must hold in general. �

A similar argument works for elliptic pseudodifferential operators on the circle,
with the resulting formula being ‘the same’ except there are now two circles forming
the boundary of T ∗S.

Proposition 28. If P ∈ Ψ0(S; CN ) is elliptic
(L13.8)

ind(P ) = dim(null(P ))− dim(null(P ∗)) =
i

2π

∫

S∗S

Tr

(

σ0(P )−1 dσ0(P )

dθ

)

dθ.

As a consequence of this one can see that the index of any differential operator
on the circle vanishes. Namely, the principal symbol of a differential operator is a
homogeneous polynomial p(θ)τk so the restrictions to ±∞ are (−1)kp(θ) as sections
of the trivial homogeneity bundle. The signs cancel in (L13.8) and the orientations
are opposite, so the terms cancel each other.

L13.2. Contractibility of the Toeplitz group. The central consequence of
the two homotopies discussed last week is the weak contractibility of the normalized
and stabilized group of invertible Toeplitz operators. Let me recall the definition.
We start with the Szegő projector, S ∈ Ψ0(S) which projects a smooth function
on the circle to its non-negative-frequency part, S : C∞(S) −→ C∞+ (S). Then the
Toeplitz algebra is the compression of the pseudodifferential algebra to the range
of S :

(L13.9) Ψ0
T (S) = SΨ0(S)S

which we think of as operators on C∞+ (S). There is no problem considering matrices

of such operators, forming the algebras Ψ0
T (S; CN ) but we want to consider the

‘fully stabilized’ algebra which is the Toeplitz algebra ‘with values in the smoothing
operators’ on another compact manifold Y (and maybe acting on a bundle E.)

So, consider

(L13.10) C∞(Y 2; Ψ0(S)⊗ E) = I− dim Y/2(Y 2 × S
2,DiagS⊗Hom(E))

where for simplicity of notation I am leaving out the density bundles, since they are
trivial anyway. From the results we have proved for conormal distributions, this is
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an algebra where the product can be interpreted in several equivalent ways. Perhaps
the clearest is to do the composition in S first. Thus, if A,B ∈ C∞(Y 2; Ψ0(S)⊗E)
then

(L13.11) A(y, y′) ◦S B(z, z′) ∈ C∞(Y 4; Ψ0(S)⊗Hom(E)L ⊗Hom(E)R)

where the two copies of Hom(E) are on the left two and the right two copies of Y.
We can then restrict to y′ = z, compose in the two copies of Hom(E) and integrate
out the z variable giving the composite

(L13.12) (A ◦B)(y, y′) =

∫

Y

A(y, z) ◦S B(z, y′)

where we really do need to be carrying the densities along to do the integration
invariantly.

Now, we can compress the operators onto the range of S as before, or equiva-
lently consider directly the smooth maps into the Toeplitz algebra C∞(Y 2; Ψ0

T (S)⊗

E). I will denote this space with the product (L13.12) as Ψ0,−∞

T
(S, Y ;E). The sym-

bol map on Ψ0
T (S) extends to give a symbol map which is multiplicative and takes

values in the loops in smoothing operators

(L13.13) σ0 : Ψ0,−∞

T
(S, Y ;E) −→ C∞(S; Ψ−∞(Y ;E)), σ0(AB) = σ0(A)σ0(B).

This algebra does effectively stabilize the matrix-valued Toeplitz operators since we
can embed the N ×N matrices as a subalgebra of Ψ−∞(Y ;E), just by choosing an
N -dimensional subspace of C∞(Y ;E), and then

(L13.14) Ψ0
T (S; CN ) →֒ Ψ0,−∞

T
(S, Y ;E)

as a subalgebra acting on the subspace. Of course such an inclusion is not natural,
but any two choices are homotopic through such embeddings, simply by rotating
one subspace of C∞(Y ;E) into the other.

Finally then we come to the group which is

(L13.15) G0
T (S, Y ;E) =

{

A ∈ Ψ0,−∞

T
(S, Y ;E); Id+σ(A) ∈ G−∞

(1) (Y ;E),

(Id+A)−1 − Id ∈ Ψ0,−∞

T
(S, Y ;E) and σ0(A)

∣

∣

1∈S
= 0

}

.

The first condition is ellipticity (recall that G−∞

(1) (Y ;E) is the loop group for

G−∞(Y ;E), corresponding to maps from the circle). The last condition is the
normalization condition. Since the symbol, fixed at a point on the circle, takes val-
ues in G−∞(Y ;E) this effectively kills off a whole classifying space for odd K-theory.
We need this to get the result we are after, namely

Theorem 5. The topological group G0
T (S, Y ;E) is weakly contractible, i.e. if

f : X −→ G0
T (S, Y ;E) is any smooth map from a compact manifold then there is a

smooth homotopy f· : X × [0, 1] −→ G0
T (S, Y ;E) with f0 = f and f1 ≡ Id .

It is easy to see that continuous maps are approximable by smooth maps – or indeed
the proof below carries through in the continuous case with only a little extra care.

Conjecture 1. The group G0
T (S, Y ;E) is dominated by a CW complex and

as a result is actually contractible.

Proof. Basically this amounts to putting the two homotopies, discussed ear-
lier, together. First however we need to discuss the topology, to check that we do
indeed have a topological group – in the infinite dimensional case such as this one
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needs to be careful. The topology on the space of conormal distributions of any
fixed order, for a fixed submanifold, is very like the C∞ topology. Namely we know
that a conormal distribution is the sum of a smooth term and the inverse Fourier
transform of a symbol and we can write this as

(L13.16) Im(X,Z;E) ∋ u =⇒ φu = F ∗F−1(a), a ∈ C∞(N∗Z;E
∣

∣

Z
⊗N−m′⊗Ωfib)

where φ ∈ C∞(X) cuts off close to Z in the collar neighbourhood fixed by F. With
such choices (including the identification of E on the collar neighbourhood with
E

∣

∣

Z
) made, a and φu ∈ C∞(X;E) are determined and we can impose the usual

C∞ topology on them. That is, the seminorms on Im(X,Z;E) are those giving
uniform convergence of all derivatives for a and φu. This gives a metric topology on
Im(X,Z;E) with respect to which it is complete. Of course it is necessary to check
that different choices of cutoff, normal fibration and bundle identification lead to
the same topology but this follows directly from the earlier proofs (and I should
have mentioned it . . . ).

The spaces of pseudodifferential operators are just special cases of conormal
distributions so they also have such topologies. Moreover the proof of the compo-
sition theorem shows the continuity of composition with respect to this topolgy, so
we have the first condition needed for a topological group, that

(L13.17) G0
T (S, Y ;E)×G0

T (S, Y ;E) ∋ (A,B) 7−→ AB ∈ G0
T (S, Y ;E)

is continuous with respect to the topology inherited from Ψ0,−∞

T
(S, Y ;E). We also

need to check that the same is true for

(L13.18) G0
T (S, Y ;E) ∋ A 7−→ A−1 ∈ G0

T (S, Y ;E).

This is the usual stumbling block. In fact, the way we constructed the inverse
was to first use the ellipticity to construct a parametrix and then the parameterix
was ‘corrected ’ to the inverse by adding a smoothing operator. The construction
of the parametrix is locally uniform on compact sets – it involves summation of
the Taylor series for the symbol. The construction of the compensating smoothing
term is also locally uniform. The uniqueness of the inverse (given that it exists)
gives continuity on compact sets. This is enough to give the continuity in (L13.18)
since the topology is metrizable, so it is enough to prove sequential continuity. In
fact the set of invertible elliptic elements is open (within the subspace fixed by the
normalization condition).

Now we proceed in 5 steps.
1) Given such a smooth map f : X ←− G0

T (S, Y ;E) we first approximate
closely, and uniformly on X, by elements of G0

T (S; CN ) using (L13.14) and hence
deform into this smaller algebra. This follows exactly as in the approximation of
smoothing operators by finite rank operators discussed earlier, the only difference
is that in (L13.10) our smoothing operators are valued in the Toeplitz operators.
So, simply decompose Y 2 into small product sets Ui ×Uj over which the bundle E
is trivial and which are embedded in the torus. Using the product of a partition
of unity from Y and Fourier expansion on the torus allows us to approximate f
arbitrarily closely. Note that the fact that the smooth functions are valued in the
linear space Ψ0

T (S) makes very little differece, since this is essentially the same as
C∞(Z) for a compact manifold Z (in fact we can reduce to that case for the symbol
and the smoothing error). It follows that the approximation is uniform on X and
when enough terms in the Fourier series are taken the resulting finite rank family



LECTURE 13: 1 NOVEMBER, 2005 113

(on Y ) lies in G0
T (S; CN ) and is homotopic to f in G0

T (S, Y ;E). Notice that we
can maintain the normalization condition by first ignoring it and then afterwards
composing with the inverse of σ0(f·)

∣

∣

1∈S
thought of as a map from X × [0, 1] into

G−∞(Y ;E).
2) Now we are reduced to a smooth map from X into G0

T (S; CN ). This was
the setting in which the homotopy given by Atiyah was discussed above. By first
approximating the symbol by its truncated Fourier expansion and then stabilizing
(depending on the order of the truncated symbol as a trigonomentric polynomial)
we get a homotopy for the symbol, stabilized to an element of C∞(S; GL(M, C)),
for M large, to a symbol of the form

(L13.19) π−(x)e−iθ + π0(x) + π+(x)eiθ ∈ C∞(S; GL(M, C)).

Here the smooth families of projections π−, π0 and π+ are mututally commuting
and sum to the identity.

A smooth family of operators with the symbol (L13.19) is

(L13.20) A(x) = π−(x)L + π0(x) + π+(x)U ∈ Ψ0
T (S; CM ).

This is certainly elliptic and we know that we may stabilize the null spaces to a
bundle by considering A(x)(Id−πk) for large enough k, where πk is projection onto
the span of the eijθ for 0 ≤ j ≤ k. The null space is then equal to that of Id−πk

and we are interested in the null bundle of the adjoint

(L13.21) null((Id−πk)A(x)∗) = null ((Id−πk)(π−(x)U + π0(x) + π+(x)L))

= sp{eijθ
C

M , 0 ≤ j ≤ (k − 1), (π0(x) + π+(x))CMeikθ, π+(x)CMei(k+1)θ}.

3) Now, the original family was invertible and we know that along a curve
of elliptics, which is initially invertible, we may perturb by a smoothing family
(initially zero) to maintain invertibility. Thus the family we arrive at, of the form
(L13.20) can be perturbed to be invertible by a smoothing operator. As shown
earlier this means that the null bundle and null bundle of the adjoint are bundle
isomorphic once they are sufficiently stabilized. In this case this just means that
the bundle (L13.21) is trivial, i.e. isomorphic to a trivial bundle of the same rank,
for large enough k. Writing out (L13.21) this means
(L13.22)

null((Id−πk)A∗(·)) = C
kM ⊕

(

C
M \ Ran(π − (·)

)

⊕ Ran(π+(·)) ≃ C
(k+1)M .

This in turn means that there exists

(L13.23) F : Ran(π−(·))⊕ C
(k+1)M ←→ Ran(π+(·))⊕ C

(k+1)M ,

i.e. that the ranges of these two projections are stably isomorphic.
Now, for any bundle, with projector π it is straightforward to see that the

symbol

(L13.24)

(

π(x)e−iθ + (Id−π(x)) 0
0 (Id−π(x)) + π(x)eiθ

)

is homotopic to the identity through invertible symbols. Indeed one such homotopy
is

(L13.25)

(

cos(θ)π(x)e−iθ + (Id−π(x)) sin(θ)π(x)
− sin(θ)π(x) (Id−π(x)) + cos(θ)π(x)eiθ

)
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rotating to π/2 and then back again without the exponentials. It follows that by
using such a homotopy from the identity (in some other matrix block) the symbol
in (L13.20) can be connected to one in which π− and π+ are increased by the same
trivial projection corresponding to C

kM . Then the isomorphism in (L13.23) can be
used to deform this symbol to the identity. Namely, simplifying the notation by
identifying π± with the stabilized projections, we may identify F as an isomorphism
from the range of π− to the range of π+. Splitting the space into three, the ranges of
π−, π0 and π+ we may consider the homotopy (where the π±’s are now redundant)
from τ = 0 to π/2

(L13.26)





cos(τ)π−e−iθ 0 sin(τ)F−1

0 π0 0
− sin(τ)F 0 cos(τ)π+eiθ





and then back again without the exponentials, finishing at the identity.
This we have deformed the family of symbols to the identity after sufficient

stabilization. As already noted this can be lifted to a deformation of invertibles,
i.e. in G0

T (S, Y ;E) which finishes at an element of G−∞

T
(S × Y ;E) (which is of

finite rank in Y.)
4) At this stage in the deformation the symbol has been trivialized and we are

reduced to a family A ∈ C∞(X;G−∞

T
(S× Y ;E)) which can be taken to be of finite

rank in Y, i.e. to have image in a subgroup G−∞

T
(S; CN ) for large N. Even if it

were not the case we can achieve this result directly by finite rank approximation
in Y as before. Now, we further make a finite rank approximation in S by replacing
the family by (Id−πk)A(x)(Id−πk) which converges uniformly to A(x) as k →∞.
Taking k sufficiently large, the family may now be assumed to act on the finite
dimensional subspace of C∞+ (S× Y ;E) spanned by

(L13.27) eijθel, 0 ≤ j ≤ k, 0 ≤ l ≤ N.

Now, again stabilize the group by expanding N to (k + 1)N by choosing k other
independent subspaces of C∞(Y ;E) of the same dimension. Then the basis in
(L13.27) is expanded to

(L13.28) eijθel,p, 0 ≤ j ≤ k, 0 ≤ l ≤ N, 0 ≤ p ≤ k

where el,0 = el and of course the operator is the identity on the terms with p > 0.
Then consider the rotation of basis elements in 2 dimensional spaces for 1 ≤ j ≤ k,
1 ≤ l ≤ N

(L13.29) cos(θ)eijθel + sin(θ)el,j , − sin(θ)eijθel + cos(θ)el,j , θ ∈ [0, π/2]

with all other elements held fixed. This has the effect of rotating all the non-trivial
parts of the matrix into the 0 Fourier term with everything outside the constants
on the circle being the identity.

5) The final step is then to follow the first homotopy of last week which allows
such a matrix in GL(N, C) ⊂ G−∞

T
(S; CN ), identified as the zero Fourier terms, to

be deformed to the identity in G0
T (S; C2N ). This completes the deformation to the

identity. �

L13.3. Classifying sequence for K-theory. One reason this weakly con-
tractible group is of interest here is that it gives a smooth classifying sequence for
K-theory.
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Theorem 6. There is a short exact sequence of topological groups

(L13.30) G−∞

T
(S× Y ;E) −→ G0,−∞

T
(S, Y ;E) −→ G−∞

(1),0(Y ;E)[[ρ]]

in which the first group is classifying for odd K-theory, the second is weakly con-
tractible and the third is (therefore) a reduced classifying group for even K-theory
(i.e. the identity component of such a classifying group). The quotient group is a
formal countable sum (i.e. the elements are sequences, written as power series in
the indeterminant ρ) with leading term an element of G−∞

(1),0(Y ;E), the subgroup of

the loop group C∞(S;G−∞(Y ;E)) consisting of the pointed loops (taking 1 to the
identity) of index zero and with lower order terms which are arbitrary elements of
C∞(S; Ψ−∞(Y ;E)).

Since (L13.30) is a short exact sequence of groups, there is a product induced on
the quotient. This will show up a bit later.

Proof. There is actually not too much to prove here since we have shown
the weak contractibility. The leading term of the projection map is just the
principal symbol σ. Thus, if A ∈ G0,−∞

T
(S, Y ;E) then we know that σ0(A) ∈

C∞(S;G−∞(Y ;E)) has index zero (this follows from our first result today) and
σ0(A)(1) = 0 is the normalization condition on the symbol. This is precisely the
definition of G−∞

(1),0(Y ;E) and the map is surjective since any such symbol of index

zero is the symbol of an invertible operator.
To get the second map in (L13.30) we just consider a normal fibration around

the diagonal in S. Then the corresponding ‘full symbol map’ takes a conormal
distribution in (L13.10) and maps it to the Taylor series at the circle at infinity of
the transverse Fourier transform of the kernel (cut off near the diagonal of S). This
gives a short exact sequence of linear maps

(L13.31) Ψ−∞

T
(S× Y ;E) −→ C∞(Y 2; Ψ0

T (S)⊗ E) −→

∞
∑

j=0

ρjC∞(S; Ψ−∞(Y ;E)).

The only constraint on an elliptic operator to be perturbable is the already-noted
requirement that the index vanish. Thus, for invertible perturbations of the identity
we arrive at (L13.30). �

There are two other closely related theorems that I will prove next time, again
as consequences of the homotopies discussed earlier. To state them I need to define
the ‘usual’ K-group K0(X) for a compact manifold X. Traditionally this is the
starting point for topological K-theory, but I have instead approach the subject
through

(L13.32) K−1(X) = [X;G−∞(Y ;E)] and

K−2(X) = [X;G−∞

(1) (Y ;E)] = [X × S,X × {1};G−∞(Y ;E), Id].

We define K0(X) as the Grothendieck group associated to stable vector bundles
(under direct sum). Thus if E −→ X and F −→ X are two vector bundles over X
they are isomorphic if there is a diffeomorphism between the total spaces E ←→ F
which maps the fibre Ex linearly to the fibre Fx; denote this relationship E ≡ F.
To define K0(X) consider pairs of vector bundles (E+, E−) (also thought of as Z2-
graded vector bundles) and the equivalence relation of stable isomorphism. That
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is

(L13.33) (E+, E−) ∼ (F+, F−)⇐⇒ ∃ H s.t. E+ ⊕ F− ⊕H ≡ E− ⊕ F+ ⊕H.

It is straightforward to check that this is an equivalence relation and the set it
defines, K0(X), is an abelian group under direct sum

(L13.34) [(E+, E−)] + [(F+, F−)] = [(E+ ⊕ F+, E− ⊕ F−)].

Theorem 7. [Families index for the Toeplitz algebra] Given [a] ∈ K−2(X),
represented by a ∈ C∞(X × S; GL(N, C)) with a(1) = Id, choosing any smooth
family of operators A ∈ C∞(X; Ψ0

T (S; CN )) with σ0(A) = a, the stabilized ‘families
index’

(L13.35) [(null(A(x)(Id−πk),null((Id−πk)A∗(x))] ∈ K0(X)

is well-defined for large k, independent of the choice of A, and defines an isomor-
phism of abelain groups

(L13.36) K−2(X) −→ K0(X).

Theorem 8. [Bott periodicity] For any representative [(E+, E−)] ∈ K0(X) one
can choose smooth families of commuting projections π−(x), π0(x), π+(x) on C

N

for large N such that E± are isomorphic to the ranges of π± and π−(x) + π0(x) +
π+(x) = Id and then the element

(L13.37) π−(x)e−iθ + π0(x) + π+(x)eiθ ∈ C∞(X × S; GL(N, C))

projects to a well-defined map

(L13.38) K0(X) −→ K−2(X)

which is an isomorphism.

The maps in these two theorems are just inverses of each other (assuming that
I have not messed up the signs).

13+. Addenda to Lecture 13

13+.1. Proof of Proposition 28. First choose an element P+ ∈ Ψ0
T (S; CN )

with σ(P+) = σ(P )
∣

∣

S∗

+
S
. Then the operator P+ + (Id−S) ∈ Ψ0

T (S; CN ) has the

same index as P+ (the latter acting on C∞+ (S; CN )) so the formula (L13.2) applies.

We can also choose a ‘negative’ Toeplitz operator, P− ∈ Ψ0
−T (S; CN ), the Toepltiz

algebra for the opposite orientation, with σ(P−) = σ(P )
∣

∣

S∗

−
S
. Extending it as the

identity on the positive side, P+P− is an elliptic operator with the same index as
P and this index is ind(P+) + ind(P−). This proves (L13.8).


