
CHAPTER 10

Chern forms and the Fredholm determinant

Lecture 10: 20 October, 2005

I showed in the lecture before last that the topological group G−∞ = G−∞(Y ;E)
for any compact manifold of positive dimension, Y, and and bundle E, is an open
subset of the (infinite dimensional) vector space Ψ−∞(Y ;E). I also, by fiat, de-
clared it to be a classifying space for odd K-theory. This would not be sensible
except of course that it is such a classifying space. If you consult a standard book
on topology you will see that my claim amounts to the assertion

(L10.1) πk(G−∞) =

{

0 k even

Z k odd.

This result, which I will prove later, justifies my declaring that for any smooth
compact manifold

(L10.2) K−1(X) = [X,G−∞]

is the abelain group of (smooth) homotopy classes of (smooth) maps.
Back to the statement that G−∞ is open in Ψ−∞, where I drop the qualifying

space Y and bundle E since they are irrelevant. This means that I can happily treat
G−∞ as a manifold. In fact the tangent space to G−∞ at a point A = Id+a (I
will try to stick to this notation of A as the whole operator and a as the smoothing
part) defined as usual as the equivalence classes of smooth curves Id+at, a0 = a,
under tangency, is just Ψ−∞,

(L10.3) dA : TAG−∞ ∋ [Id +at] 7−→
dat

dt

∣

∣

t=0
∈ Ψ−∞.

The notation ‘dA’ really comes from Lie group theory. In fact we may think of this
map as defined on the whole of the tangent bundle to G−∞ and hence also

(L10.4) A−1dA : TG−∞ −→ Ψ−∞.

This is the universal left-invariant 1-form on G−∞. Under left multiplication by
B ∈ G−∞

(L10.5) LB : G−∞ ∋ A 7−→ BA ∈ G−∞, L∗
B(A−1dA) = A−1B−1BdA = A−1dA.

From this form we may construct the (Unnormalized) odd Chern forms

(L10.6) u2k−1 = Tr
(

(A−1dA)2k−1
)

, k = 1, 2, . . . .
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88 10. CHERN FORMS AND THE FREDHOLM DETERMINANT

Here the product is interpreted as the product in Ψ−∞ followed by antisymmetriza-
tion, i.e. the wedge product. Written out more formally this is
(L10.7)

u2k−1(b1, . . . , b2k−1) =
∑

σ∈Σ2k−1

sgn(σ)Tr
(

A−1bσ(1)A
−1bσ(2) · · ·A

−1bσ(2k−1)

)

where the sum is over the permutation group on {1, . . . , 2k − 1}. The smoothness
of composition, inversion and the trace shows this to be a smooth form on G−∞.
Of course this can also be done with an even number of factors but then the trace
idenity shows that
(L10.8)
Tr

(

(A−1dA)2k
)

= Tr
(

(A−1dA) ∧ (A−1dA)2k−1)
)

= −Tr
(

(A−1dA)2k−1) ∧ (A−1dA)
)

= 0

since an odd number of transpositions occur.
The forms u2k−1 are left invariant, from the left invariance of A−1dA but also

right-invariant, since under RB : G−∞ ∋ A 7−→ AB ∈ G−∞, R∗
B(A−1dA) =

B−1(A−1dA)B.
Now the standard formula dA−1 = −A−1(dA)A−1 is justified here as usual

by differentiation the equality of smooth functions A−1A = Id . Rewriting the
definition
(L10.9)
u2k−1 = Tr

(

(A−1dA) ∧ (A−1dAA−1dA)k−1
)

= (−1)k−1 Tr
(

(A−1dA) ∧ (dA−1 ∧ dA)k−1
)

.

Thus,
(L10.10)
du2k−1 = (−1)k−1 Tr

(

(dA−1 ∧ dA) ∧ (dA−1 ∧ dA)k−1
)

= −Tr
(

(A−1dA)2k
)

= 0

and it follows that these forms are closed.
By definition in (L10.2), and odd K-class on a compact manifold X is repre-

sented by a smooth map f : X −→ G−∞. We may use f to pull back the forms u2k−1

to smooth forms on X. Since df∗u2k−1 = f∗(du2k−1) these forms are necessarily
closed.

Proposition 22. The deRham model of cohomology leads, for each k ∈ N, to

a well-defined and additive map

(L10.11) U2k−1 : K−1(X) −→ H2k−1(X; C).

Proof. The deRham cohomology class of the closed from f∗u2k−1 is constant
under homotopy from f : X −→ G−∞ to f : X −→ G−∞. Indeed, such an
homotopy is a smooth map F : [0, 1]×X −→ G−∞ with F (0, ·) = f and F (1, ·) = f ′.
If ft = F (t, ·) then dF ∗u2k−1 = becomes the condition

(L10.12)
df∗

t u2k−1

dt
= dXvt =⇒ f∗

1 u2k−1 − f∗
0 u2k−1 = dv, v =

∫ 1

0

vtdt.

Thus the map (L10.11) is well-defined. Its additivity follows from the discussion
last time which shows that two maps fi : X −→ G−∞, i = 1, 2 may be deformed
homotopically to be each finite rank perturbations of the identity and in commuting
N×N blocks in G−∞. For such maps the product (f1f2)

∗u2k−1 = f∗
1 u2k−1+f∗

2 u2k−1

showing the additivity. �
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Taking the correct constants in a formal sum

(L10.13)
∑

k

ckU2k−1 : K−1(X) −→ Hodd(X; C)

will give the ‘odd Chern character’ discussed later. Its range then spans Hodd(X; C)
and its null space is the finite subgroup of torsion elements of K−1(X), those
elements satisfying p[f ] = 0 (represented by the constant maps) for some integer p
depending on f.

Even Chern forms can be defined in the same way as forms on the group G−∞

(1) .

Let me use the version of this group defined last time, were we consider (for some
underlying manifold Y and bundle E) the space of smooth Schwartz maps

(L10.14) G−∞

(1) (Y,E) =

{a ∈ S(Rt; Ψ
−∞(Y ;E)) = S(R×Y 2; Hom(E)⊗π∗

RΩY ); Id +at ∈ G−∞(Y ;E) ∀ t ∈ R}.

Then again G−∞

(1) is an open subspace of S(R × Y 2; Hom(E) ⊗ π∗
RΩY ) and we set

(L10.15) u2k =

∫

R

Tr

(

(A−1dA)2k(A−1 dA

dt

)

dt.

Since we may regard G−∞

(1) as a subset of C∞(R;G−∞) this may also be considered

as the integral over R of the pullback of u2k+1. In any case this is again a closed
form, this can also be seen directly, and for the same reasons as in the odd case
defines an additive map

(L10.16) K−2(X) −→ H2k(X; C) for each k ∈ N0.

An appropriate combination of these forms gives the Chern character (now the
‘usual’ Chern character) which has image spanning over C.

The simplest, and most fundamental, cases of these forms are the first odd
Chern form

(L10.17) u1 = Tr(A−1dA) on G−∞

and its integral in the even case

(L10.18) u0 =

∫

R

Tr(A−1 dA

dt
)dt, A ∈ G−∞

(1) .

Proposition 23. The form u1/2πi is integral, i.e. for any smooth map γ :
S −→ G−∞,

(L10.19)

∫

γ

u1 ∈ 2πiZ.

Proof. We may prove this by finite rank approximation. Since the integral
is a cohomological pairing, we know it is homotopy invariant. Thus it suffices to
replace γ by an approximating loop which is a uniformly finite rank perturbation of
the identity. Thus we can assume that γ : S −→ GL(N, C) for some embedding of
GL(N, C) in G−∞. Since the trace restricts in any such embedding we are reduced
to the matrix case. Then (L10.19) follows from the standard formula for matrices
that

(L10.20) d log det(A) = Tr(A−1dA)

with the integer in (L10.19) being the variation of the argument of the determinant
along the curve. �
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Conversely we may use (L10.19) to conclude the the definition of the determi-
nant on G−∞ which I proposed earlier,

(L10.21) det(A) = exp

(
∫ 1

0

Tr(A−1
t

dAt

dt
dt

)

,

where t → At is a curve in G−∞ from A0 = Id to A1 = A, does indeed lead to a
well-defined function

(L10.22) det : G−∞ −→ C.

Indeed, such a curve exists, by the connectedness of G−∞ and two such curves
differ by a closed curve (admittedly only piecewise smooth but that is not a serious
issue).

Furthermore it follows directly from the definition that det is multiplicative.
Namely for AB we may use the product AtBt of the curves connection the factors
to the identity. Then

(L10.23) (AtB + t)−1d(AtBt) = B−1
t dBt + B−1

t (A−1
t dAt)Bt =⇒

Tr(AtB + t)−1d(AtBt) = Tr(B−1
t dBt) + Tr(A−1

t dAt)

from which it follows that det(AB) = det(A) det(B) as in the finite dimensional
case. Of course this also follows by approximation, given the continuity of det which
follows from the same formula.

In fact the Fredholm determinant in (L10.22) extends to a smooth map

(L10.24) Ψ−∞(Y ;E) ∋ A 7−→ det(Id+A)C

which is non-vanishing precisely on G−∞.
++++ Add definition near zeros (this is a good exercise!)
Of course it follows from Propositon 23 that

(L10.25)
u0

2πi
: G−∞

(1) −→ Z.

We shall see below that this can be interpreted as the simplest case of the index
formula and that this map faithfully labels the components of G−∞

(1) .

Next I turn to the Toeplitz algebra. This algebra is the basic object which
leads to a short exact sequence of groups

(L10.26) G−∞ −→ G0 −→ G−∞

(1),−[[ρ]] ∼ G−∞

(1),0.

Here I will not explain the whole notation for the moment, but the normal subgroup
on the left is one of our ‘smoothing groups’, the central group is supposed to be
contractible and the group on the right is homotopic to the identity component
(this is the extra 0 subscript, meaning the index is zero in (L10.25)) of the loop
group G−∞

(1) .

Now, this sequence is supposed to come, after some work, from the short exact
sequence arises from the symbol of a pseudodifferential operator

(L10.27) Ψ−1(X; CN ) −→ Ψ0(Z; CN ) −→ C∞(S∗Z;M(N, C)).

For the moment I will ignore the difference between Ψ−1 and Ψ−∞, when taken
into account this will lead to the ‘formal power series’ parameter ρ on the right in
(L10.26) – there are other more serious problems to be dealt with! To get from
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(L10.27) to (L10.26) we first want to consider the set of elliptic and invertible ele-
ments of Ψ0(Z; CN ). If we consider the normal subgroup of invertible perturbations
of the identity we arrive at

(L10.28) G−1(Z; CN ) −→ G0(Z; CN ) −→ C∞(S∗Z; GL(N, C)).

Here
(L10.29)
G−1(Z; CN ) = {Id +A;A ∈ Ψ−1(Z; CN ), (Id +A)−1 = Id+B, B ∈ Ψ−1(Z; CN )},

G0(Z; CN ) = {A;A ∈ Ψ0(Z; CN ) elliptic and A−1 ∈ Ψ0(Z; CN )}

where we will finally replace the former by G−∞.
Now, in general the second map in (L10.28) is not surjective, since that would

mean that every elliptic element can be perturbed to be invertible and we known
that this means precisely that the index vanishes. Thus the index is the (only)
obstruction to the exactness of (L10.28). Of course we want to discuss this in
treating the index formula but for the moment I am after something else.

Namely, I would like to choose Z so that the central group in (L10.28) is
contractible and the image group is essentially a G−∞

(1) . To arrange the latter we

need to do two things. First we need to choose the manifold Z so that

(L10.30) S∗Z = S

and then to ‘stabilize’ things so that C
n is replaced by an infinite dimensional space

in such a way that GL(N, C) becomes one of our G−∞ groups. This second step
may seem the most daunting but it is not and I will discuss how to do this next
time. So, let us think about how to arrange (L10.30). Of course the small problem
here is that this is impossible, there is no such manifold. Indeed, it would have to be
1-dimensional and compact, hence just the circle if we demand it to be connected.
However

(L10.31) S∗
S = S ⊔ S

is the disjoint union of two copies of the circle.
There are two ways to overcome this problem (well I know a third which you

can find in [4] if you look hard enough). Stated vaguely these are

(A) Replace the circle by the line R so that ‘S∗
R’ is interpreted as the bound-

ary of the radial compactification of T ∗
R = R

2 as a vector space (not a
vector bundle over R). In this sense we would arrive at (L10.30). I was
going to do this in these lectures, and I may still do so. It requires go-
ing back to the beginning of the lectures and discussing a variant of the
conormal distributions for subspaces of a vector space. This leads to the
‘isotropic calculus’ on R (or in fact on R

n) which can be used to construct
the sequence I am after.

(B) Kill off half of (L10.31) and work on the remaing half. This is what I
will do, namely discuss the Toeplitz algebra and its variants. I find this
approach less geometrically transparent but it has plenty of history behind
it.

For the circle we can decomposte smooth functions as a direct sum

(L10.32) C∞(S) = C∞
− (S) + C∞

+ (S)
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where these are limited by the Fourier coefficients

(L10.33) a ∈ C∞
+ (S) ⇐⇒ a =

∑

k≥0

akeikθ,
∑

k≥0

|ak|k
j < ∞ ∀ j.

The Szegő projection is the linear map which excises the negative Fourier modes

(L10.34) S : C∞(S) −→ C∞
+ (S), S(a) =

∑

k≥0

akeikθ if a =
∑

k∈Z

akeikθ.

Clearly this is a projection, S2 = S with null space C∞
− (S) and range C∞

+ (S).
Note that one can always recover a compact manifold, Z, from C∞(Z) with

its multiplicative structure. Namely the points of Z can be identified with the
valuations on the ring, the linear maps p : C∞(Z) −→ C such that p(fg) = p(f)p(g).
The space C∞

+ (S) is a ring, as follows easily from the definition, but it is not the
space of smooth functions on a manifold since the set of valuations actually recovers
S. Still, the idea is that we can think of this ‘Hardy space’ C∞

+ (S) as the space of
functions on ‘half of S.’ Note that the Fourier parameter k is closely related to the
dual variable on the fibres of the cotangent space T ∗

S = S×R which indicates that
S restricts to the ‘positive half of the cotangent bundle.’ More concretely

Lemma 21. The Szegő projector S ∈ Ψ0(S).

Consider the Toeplitz algebra

(L10.35) T = {A ∈ Ψ0(S);A = SAS}.

It is indeed a subalgebra of the algebra of pseudodifferential operators since
(L10.36)

A1, A2 ∈ T =⇒ S(A1A2) = S(SA1S)(SA2S)S = (SA1S)(SA2S) = A1A2.

To arrive at the algebra I will proceed in three steps.

(1) We need to replace Ψ0(S) by the corresponding algebra of operators ‘val-
ued in the smoothing operators’ on some manifold Y. This can be identified
with C∞(Y 2; Ψ0(S)).

(2) The symbol space of this algebra consists of smooth functions on S∗
S =

S⊔S with values in C∞(Y 2). We will consider the subalgebra of functions
which have (full) symbols vanishing to infinite order at one point p ∈ S+.

(3) We then consider the corresponding Toeplitz algebra SAS with A of this
form and define G0 to be the group of operators of the form Id+SAS
which are elliptic on S+ and invertible.

(4) This group G0 is actually contractible.

10+. Addenda to Lecture 10


