
18.156 LECTURE 3

Manifolds: Definitions

(1) A paracompact, Hausdorff topological space, M, with a covering by smoothly-
related coordinate patches.

Coordinate patch in topological space: Open set with a homeomor-
phism to an open set of Rn.

Smooth relation of coordinate patches, Fi : Ui −→ U ′i i = 1, 2 is the
condition that either U1 ∩ U2 = ∅ or else F2 ◦ F−11 : F1(U1 ∩ U2) −→
F2(U1 ∩ U2) is a diffeomorphism of open sets.

(2) A set M with a given algebra of functions (over the reals here) denoted
C∞(M) such that

Points of M are separated by C∞(M).
For each point p ∈ M there exist ‘local coordinates at p’ meaning

functions fi ∈ C∞(M), i = 1, . . . , n (n fixed independently of the point)
such that for some set Up 3 p, Fp = (f1, . . . , fn) : Up −→ Rn is a bijection
to an open set U ′p and

(1)

(F−1p )∗ : C∞(M)
∣∣
Up
−→ C∞(U ′p)

F ∗p : C∞c (U ′p) −→ C∞(M) (by extension as zero) is an injection

a countable collection of these sets Up cover M

f ∈ C∞(M) iff (F−1p )∗f
∣∣
Up
∈ C∞(U ′p) ∀ p ∈M.

(3) A set M with a C∞ algebra of real-valued functions C∞(M) in which there
exist N generating elements gi such that the map G = (g1, . . . , gN ) : M −→
RN is a bijection onto G(M) ⊂ RN where for each p ∈M, G(M) is defined
in a neighbourhood of G(p) by N − n smooth functions with independent
differentials. It follows that C∞(M) = G∗C∞(RN ).

These you might think of these as the (standard) covering definition, the alge-
braic definition and the extrinsic definition respectively. Note that a C∞ algebra
(of real-valued functions) is one such that u(f1, . . . , fk) is also in the algebra for
any elements fk and any u ∈ C∞(Rk).

I do not plan to go through the equivalence of these in class. If anyone wants to
write it out (and thereby check that I haven’t forgotten something) I am happy to
help and give feedback.

So, I will simply assume all these properties and go on to discuss properties of
manifolds which follow directly from these. The basic examples are open subsets
of Rn and embedded submanifolds, as in the last definition (in particular it follows
that one can consider embedded submanifolds of open subsets of Rn).

Now, what follows easily. Well, we make various natural definitions consistent
with the case of open sets.

(1) A smooth map F : M −→ N is a map such that F ∗C∞(N) ⊂ C∞(M).
1
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(2) The cotangent space at a point p ∈M is the quotient T ∗pM = I(p)/I(p)2 of
the ideal I(p) ⊂ C∞(M) of functions which vanish at p by the ideal which
is the (finite) span of products.

(3) The differential of a function df(p) ∈ T ∗pM is the image of f − f(p).
(4) The differential of a smooth map is naturally a linear map F ∗p = dF (p) :

T ∗F (p)N −→ T ∗pM.

(5) The cotangent fibres at all points can be combined into a smooth manifold,
the cotagent bundle T ∗M =

⋃
p∈M T ∗pM as a set. The coordinate form of

a C∞ structure on T ∗M is given by the maps from sets T ∗UM = T ∗U =⋃
p∈U T

∗
pM to U ′ × Rn given by the coordinate definition of the cotangent

spaces.
NB. Smooth maps do not in general induce smooth maps on the cotan-

gent bundles – because they are only defined over the image of the map.
(6) The dual bundle, TM defined in the same way using the dual spaces TpM =

(T ∗pM)′ is also a smooth manifold and the maps defined as the dual of the
F ∗p do combine to give a smooth map F∗ : TM −→ TN, the crucial thing
being only that it is defined everywhere.

So, in principle there is are a lot of basic constructions to do. Anyone unfamilar
with these should probably use, at least initially, the third definition of a manifold
above and refer everything back to the underlying Euclidean space (although this
does not really simplify things!)

Now, I will proceed to define differential operators on manifolds and the spaces
they map between. First let’s consider distributions. As well as the space C∞(M)
and its complexification – just pairs of real maps thought of as a map into C with
complex multiplication therefore defined – we consider the subspace of compactly
supported functions

(2) C∞c (M) ⊂ C∞(M).

To make various computations we will use

Proposition 1 (Partitions of unity). Any open cover Oa, a ∈ A, of any manifold
M there is a partition of unity subordinate to it, that is a countable collection
φi ∈ C∞c (M) of real-valued functions of compact support with 0 ≤ φi(0) ≤ 1 for all
p ∈M such that

(3)

∀ i, supp(φi) ⊂ Oa for some a ∈ A
∀ i, supp(φi) ∩ supp(φj) 6= ∅ for finitely many j∑

i

φi(p) = 1 ∀ p ∈M.

Now, back to local elliptic regularity and the three little Lemmas from the end
of Lecture 2.

Lemma 1. For any s ∈ R each φ ∈ S(Rn) is a multiplier on Hs(Rn) and

(4) ‖φu‖Hs ≤ sup |φ|‖u‖Hs + Cs,φ‖u‖Hs−1 ∀ u ∈ Hs(Rn).

Lemma 2. For any φ ∈ S(Rn) and any t, s ∈ R,

(5) [φ, 〈D〉t] : Hs(Rn) −→ Hs−t+1(Rn) is bounded.
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Lemma 3. For any ψ, φ ∈ S(Rn), and s ∈ R, convolution operator by φε(x) =
ε−nφ(x/ε) gives a uniformly bounded linear map

(6) [ψ, φε∗] : Hs(Rn) −→ Hs+1(Rn), 0 < ε ≤ 1.

Let’s start with

Proof of Lemma 2. We know that 〈D〉s is an isomorphism of Hs(Rn) to L2(Rn) so
it suffices to show that the operator (on tempered distributions)

(7) 〈D〉s−t+1[φ, 〈D〉t]〈D〉−s

is bounded on L2(Rn).
Taking the Fourier transform this is equivalent to the boundedness of the oper-

ator

(8) 〈η〉s−t+1[φ̂∗, 〈η〉t]〈η〉−s

on L2(Rn). Now, we can write out the kernel as an integral operator and it is just

(9)
K(η, ξ) = F (η, ξ)φ̂(η − ξ),

F (η, ξ) = 〈η〉s−t+1〈ξ〉−s+t − 〈η〉s+1〈ξ〉−s.

Now we can check that for any N

(10) |K(η, ξ)| ≤ CN (1 + |η − ξ|)−N

This is clear in any region |η − ξ| ≥ δ(|η|+ |ξ|), δ > 0 since the polynomial growth

of F in η or ξ is offset by the rapid decay of φ̂(η− ξ). In the complementary region
(take δ small) |η| and |ξ| are bounded by multiples of each other and |η − ξ| by a
multiple of either. Using Taylor’s formula with remainder for F around the diagonal
it follows that

(11) |F (η, ξ)| ≤ C|η − ξ|

and the same estimate follows.
Now an application of Cauchy-Schwartz, or Schur’s Lemma gives boundedness

on L2(Rn). �

Proof of Lemma 1. A norm bound on φ ∈ S(Rn) as a multiplication operator on
Hs(Rn) is equivalent to a norm bound on 〈D〉−sφ〈D〉s as an operator on L2. Writing
this as φ + [〈D〉−s, φ]〈D〉s the norm bound (4) follows from Lemma 2 applied to
the second term. �

Proof of Lemma 3. Again identifying Hs(Rn) (with norm) as the image of 〈D〉−s
applied to L2(Rn) we see that the result is the same as the uniform boundedness
of

(12) 〈D〉s+1[ψ, φε∗]〈D〉−s

on L2(Rn). Conjugating by the Fourier transform as before this reduces to the
uniform boundedness of

(13) 〈η〉s+1[ψ̂∗, φ̂(εη)]〈η〉−s

on L2(Rn). Ignoring the ‘hats’ since these are just Schwartz functions the kernel of
this as an integral operator is

(14) K(η, ξ) = G(η, ξ)ψ(η − ξ)G(η, ξ) = 〈η〉s+1〈ξ〉−s ((φ(εξ)− φ(εη)) .
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Now, reconsider the proof of Lemma 2 above and look for the same bound (10). In
the first region the same argument applies since only the polynomial boundedness
of the coefficient function G(η, ξ) was used. In the second region we can again
apply Taylor’s formula with remainder, or just the mean value theorem, to bound
the difference

(15) |φ(εη)− φ(εξ)| ≤ Cε|η − ξ|(1 + ε|ξ|)−1, |η − ξ| ≤ δ(|η|+ |ξ|), δ > 0 small.

The coefficient of ε is important of course, since it means that we get (7) again,
since the extra factor of |η| can be absorbed by ε|η| ≤ C(1+ε|η|). Thus the uniform
boundedness follows. �

Clearly there is a very close relationship between Lemmas 2 and 3 and in fact
all three Lemmas can be absorbed into the ‘L2 boundedness of pseudodifferential
operators’.

So, if I have time I will again review the proof of local elliptic regularity, but
what I showed in Lecture 2 is that it follows from elliptic regularity for constant
coefficient operators and these three results.


