18.156 LECTURE 3

Manifolds: Definitions

(1) A paracompact, Hausdorff topological space, M, with a covering by smoothly-
related coordinate patches.

Coordinate patch in topological space: Open set with a homeomor-
phism to an open set of R".

Smooth relation of coordinate patches, F; : U; — U/ ¢ = 1,2 is the
condition that either U3 N Uy = 0 or else F, o F1_1 s UL NUy) —
F»(U; NUy) is a diffeomorphism of open sets.

(2) A set M with a given algebra of functions (over the reals here) denoted
C>° (M) such that

Points of M are separated by C>(M).

For each point p € M there exist ‘local coordinates at p’ meaning
functions f; € C*(M), i = 1,...,n (n fixed independently of the point)
such that for some set U, 3 p, Fj, = (f1,..., fn) : Up — R™ is a bijection
to an open set U, and

(F, ) - Cc=(@), — C=(Uy)
* [ele] ! [e'e] . . .. .
Fy:CZ(U,) — C=(M) (by extension as zero) is an injection
a countable collection of these sets U, cover M

fece(M)iff (prl)*ﬂUp eC™(U)) Vpe M.

(3) A set M with a C* algebra of real-valued functions C°°(M) in which there
exist N generating elements g; such that the map G = (¢g1,...,958) : M —
RY is a bijection onto G(M) C RY where for each p € M, G(M) is defined
in a neighbourhood of G(p) by N — n smooth functions with independent
differentials. It follows that C>°(M) = G*C>(RY).

These you might think of these as the (standard) covering definition, the alge-
braic definition and the extrinsic definition respectively. Note that a C*° algebra
(of real-valued functions) is one such that w(f1,..., fr) is also in the algebra for
any elements fj, and any u € C®(RF).

I do not plan to go through the equivalence of these in class. If anyone wants to
write it out (and thereby check that I haven’t forgotten something) I am happy to
help and give feedback.

So, I will simply assume all these properties and go on to discuss properties of
manifolds which follow directly from these. The basic examples are open subsets
of R"™ and embedded submanifolds, as in the last definition (in particular it follows
that one can consider embedded submanifolds of open subsets of R™).

Now, what follows easily. Well, we make various natural definitions consistent
with the case of open sets.

(1) A smooth map F': M — N is a map such that F*C*(N) C C*>°(M).
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(2) The cotangent space at a point p € M is the quotient T M = Z(p)/Z(p)* of
the ideal Z(p) C C>°(M) of functions which vanish at p by the ideal which
is the (finite) span of products.

(3) The differential of a function df (p) € Ty M is the image of f — f(p).

(4) The differential of a smooth map is naturally a linear map F; = dF(p) :
TrpN — Ty M.

(5) The cotangent fibres at all points can be combined into a smooth manifold,
the cotagent bundle T*M = Upe a Iy M as a set. The coordinate form of
a C* structure on T*M is given by the maps from sets Tj5M = T*U =
Uper Ty M to U’ x R™ given by the coordinate definition of the cotangent
spaces.

NB. Smooth maps do not in general induce smooth maps on the cotan-
gent bundles — because they are only defined over the image of the map.

(6) The dual bundle, TM defined in the same way using the dual spaces T,M =
(T, M) is also a smooth manifold and the maps defined as the dual of the
F, do combine to give a smooth map Fy : M — T'N, the crucial thing
being only that it is defined everywhere.

So, in principle there is are a lot of basic constructions to do. Anyone unfamilar
with these should probably use, at least initially, the third definition of a manifold
above and refer everything back to the underlying Euclidean space (although this
does not really simplify things!)

Now, I will proceed to define differential operators on manifolds and the spaces
they map between. First let’s consider distributions. As well as the space C* (M)
and its complexification — just pairs of real maps thought of as a map into C with
complex multiplication therefore defined — we consider the subspace of compactly
supported functions

(2) CX (M) C C®(M).
To make various computations we will use

Proposition 1 (Partitions of unity). Any open cover O, a € A, of any manifold
M there is a partition of unity subordinate to it, that is a countable collection
¢; € C(M) of real-valued functions of compact support with 0 < ¢;(0) < 1 for all
p € M such that

Vi, supp(¢;) C O, for some a € A
3) Vi, supp(¢;) Nsupp(p;) # O for finitely many j
> $ilp)=1VpeM.
Now, back to local elliptic regularity and the three little Lemmas from the end
of Lecture 2.
Lemma 1. For any s € R each ¢ € S(R™) is a multiplier on H*(R™) and
(4) [pullers < sup[f[[ullas + Csgllul e ¥V u € H*(R").
Lemma 2. For any ¢ € S(R™) and any t, s € R,
(5) (¢, (D) : H*(R™) — H*""Y(R") is bounded.



18.156 LECTURE 3 3

Lemma 3. For any ¢, ¢ € S(R™), and s € R, convolution operator by ¢.(x) =
e "o(x/e) gives a uniformly bounded linear map

(6) [, pex] : H¥(R™) — H*TH(R"), 0 <e< 1.
Let’s start with
Proof of Lemma 2. We know that (D) is an isomorphism of H*(R") to L?(R") so

it suffices to show that the operator (on tempered distributions)
(7) (D)* o, (D) UD)™*

is bounded on L?(R").
Taking the Fourier transform this is equivalent to the boundedness of the oper-
ator

(8) ()=~ o, () () ~*

on L?(R™). Now, we can write out the kernel as an integral operator and it is just

K(n,§) = F(n,§)é(n—¢),
F(n,&) = (n)* 1)~ — (n)*F1()~*.

Now we can check that for any N

(10) [K(1,6)] < On(1+n =&)Y

This is clear in any region |n — &| > §(|n| + |£]), & > 0 since the polynomial growth
of F in n or £ is offset by the rapid decay of (ﬁ(n — &). In the complementary region
(take 0 small) |n| and |¢| are bounded by multiples of each other and |n — £| by a
multiple of either. Using Taylor’s formula with remainder for ' around the diagonal
it follows that

(11) |[F'(n,€)] < Cln— ¢

and the same estimate follows.
Now an application of Cauchy-Schwartz, or Schur’s Lemma gives boundedness
on L?(R™). O

(9)

Proof of Lemma 1. A norm bound on ¢ € S(R™) as a multiplication operator on
H*(R") is equivalent to a norm bound on (D) *¢(D)* as an operator on L?. Writing
this as ¢ + [(D)~*%, ¢](D)® the norm bound (4) follows from Lemma 2 applied to
the second term. (]

Proof of Lemma 3. Again identifying H®(R™) (with norm) as the image of (D)~*
applied to L?(R") we see that the result is the same as the uniform boundedness
of

(12) (D), ¢ex (D)~

on L?(R™). Conjugating by the Fourier transform as before this reduces to the
uniform boundedness of

(13) (> b, d(en)] (m)

on L?(R™). Ignoring the ‘hats’ since these are just Schwartz functions the kernel of
this as an integral operator is

(14)  K(n,8) = Gn,&)v(n—€)G(n,€) = ()" (€)™ (6(e€) — d(en)).
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Now, reconsider the proof of Lemma 2 above and look for the same bound (10). In
the first region the same argument applies since only the polynomial boundedness
of the coefficient function G(n,&) was used. In the second region we can again
apply Taylor’s formula with remainder, or just the mean value theorem, to bound
the difference

(15)  [é(en) — o(e€)| < Celn — €L +€le) ™, [ — €| < a(|nl + [€]), & > 0 small.

The coefficient of € is important of course, since it means that we get (7) again,
since the extra factor of |n| can be absorbed by €|n| < C(1+¢|n|). Thus the uniform
boundedness follows. O

Clearly there is a very close relationship between Lemmas 2 and 3 and in fact
all three Lemmas can be absorbed into the ‘L? boundedness of pseudodifferential
operators’.

So, if I have time I will again review the proof of local elliptic regularity, but
what I showed in Lecture 2 is that it follows from elliptic regularity for constant
coefficient operators and these three results.



