Elliptic regularity and Monopoles

Richard Melrose

Department of Mathematics, Massachusetts Institute of Technology
E-mail address: rbm@math.mit.edu
Contents

<table>
<thead>
<tr>
<th>Chapter 1. Distributions</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fourier transform</td>
<td>5</td>
</tr>
<tr>
<td>2. Schwartz space.</td>
<td>5</td>
</tr>
<tr>
<td>3. Tempered distributions.</td>
<td>6</td>
</tr>
<tr>
<td>4. Fourier transform</td>
<td>7</td>
</tr>
<tr>
<td>5. Sobolev spaces</td>
<td>7</td>
</tr>
<tr>
<td>6. Weighted Sobolev spaces</td>
<td>8</td>
</tr>
<tr>
<td>7. Multiplicativity</td>
<td>10</td>
</tr>
<tr>
<td>8. Some bounded operators</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2. Elliptic Regularity</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Constant coefficient operators</td>
<td>15</td>
</tr>
<tr>
<td>2. Constant coefficient elliptic operators</td>
<td>16</td>
</tr>
<tr>
<td>3. Interior elliptic estimates</td>
<td>22</td>
</tr>
<tr>
<td>Addenda to Chapter 2</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. Coordinate invariance and manifolds</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Local diffeomorphisms</td>
<td>31</td>
</tr>
<tr>
<td>2. Manifolds</td>
<td>35</td>
</tr>
<tr>
<td>3. Vector bundles</td>
<td>39</td>
</tr>
<tr>
<td>Addenda to Chapter 3</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. Invertibility of elliptic operators</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Global elliptic estimates</td>
<td>41</td>
</tr>
<tr>
<td>2. Compact inclusion of Sobolev spaces</td>
<td>43</td>
</tr>
<tr>
<td>3. Elliptic operators are Fredholm</td>
<td>44</td>
</tr>
<tr>
<td>4. Generalized inverses</td>
<td>47</td>
</tr>
<tr>
<td>5. Self-adjoint elliptic operators</td>
<td>50</td>
</tr>
<tr>
<td>6. Index theorem</td>
<td>54</td>
</tr>
<tr>
<td>Addenda to Chapter 4</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5. Suspended families and the resolvent</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Product with a line</td>
<td>55</td>
</tr>
<tr>
<td>2. Translation-invariant Operators</td>
<td>60</td>
</tr>
<tr>
<td>3. Invertibility</td>
<td>65</td>
</tr>
<tr>
<td>4. Resolvent operator</td>
<td>70</td>
</tr>
<tr>
<td>Addenda to Chapter 5</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6. Manifolds with boundary</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compactifications of R</td>
<td>73</td>
</tr>
<tr>
<td>2. Basic properties</td>
<td>76</td>
</tr>
</tbody>
</table>
3. Boundary Sobolev spaces 76
4. Dirac operators 77
5. Homogeneous translation-invariant operators 77
6. Scattering structure 79
7. Manifolds with corners 83
8. Blow up 83

Chapter 7. Electromagnetism 85
1. Maxwell’s equations 85
2. Hodge theory and \mathbb{R}^3 85
3. Addenda to Chapter 7 85
4. Coulomb potential 85
5. Dirac strings 85

Chapter 8. Monopoles 87
1. Gauge theory 87
2. Bogomolny equations 87

Bibliography 89
CHAPTER 1

Distributions

Summary of parts of 18.155 and a little beyond. With some corrections by Jacob Bernstein incorporated.

1. Fourier transform

The basic properties of the Fourier transform, tempered distributions and Sobolev spaces form the subject of the first half of this course. I will recall and slightly expand on such a standard treatment.

2. Schwartz space.

The space \(S(\mathbb{R}^n) \) of all complex-valued functions with rapidly decreasing derivatives of all orders is a complete metric space with metric

\[
d(u, v) = \sum_{k=0}^{\infty} 2^{-k} \frac{\|u - v\|_{(k)}}{1 + \|u - v\|_{(k)}}
\]

where

\[
\|u\|_{(k)} = \sum_{|\alpha| + |\beta| \leq k} \sup_{z \in \mathbb{R}^n} \|z^{\alpha} D^\beta z u(z)\|.
\]

Here and below I will use the notation for derivatives

\[
D_z^\alpha = D_{z_1}^{\alpha_1} \cdots D_{z_n}^{\alpha_n}, \quad D_{z_j} = \frac{1}{i} \frac{\partial}{\partial z_j}.
\]

These norms can be replaced by other equivalent ones, for instance by reordering the factors

\[
\|u\|'_{(k)} = \sum_{|\alpha| + |\beta| \leq k} \sup_{z \in \mathbb{R}^n} |D^\beta z u(z)|.
\]

In fact it is only the cumulative effect of the norms that matters, so one can use

\[
\|u\|''_{(k)} = \sup_{z \in \mathbb{R}^n} |\langle z \rangle^{2k} (\Delta + 1)^k u|
\]

in (1.1) and the same topology results. Here

\[
\langle z \rangle^2 = 1 + |z|^2, \quad \Delta = \sum_{j=1}^{n} D_j^2
\]

(so the Laplacian is formally positive, the geometers’ convention). It is not quite so trivial to see that inserting (1.2) in (1.1) gives an equivalent metric.
3. Tempered distributions.

The space of (metrically) continuous linear maps

(1.3) \[f : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathbb{C} \]

is the space of tempered distribution, denoted \(\mathcal{S}'(\mathbb{R}^n) \) since it is the dual of \(\mathcal{S}(\mathbb{R}^n) \). The continuity in (1.3) is equivalent to the estimates

(1.4) \[\exists k, C_k > 0 \text{ s.t. } |f(\varphi)| \leq C_k \|\varphi\|_{(k)} \forall \varphi \in \mathcal{S}(\mathbb{R}^n). \]

There are several topologies which can be considered on \(\mathcal{S}'(\mathbb{R}^n) \). Unless otherwise noted we consider the uniform topology on \(\mathcal{S}'(\mathbb{R}^n) \); a subset \(U \subset \mathcal{S}'(\mathbb{R}^n) \) is open in the uniform topology if for every \(u \in U \) and every \(k \) sufficiently large there exists \(\delta_k > 0 \) (both \(k \) and \(\delta_k \) depending on \(u \)) such that

\[v \in \mathcal{S}'(\mathbb{R}^n), \quad |(u - u_0)(\varphi)| \leq \delta_k \|\varphi\|_{(k)} \Rightarrow v \in U. \]

For linear maps it is straightforward to work out continuity conditions. Namely

\[P : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^m) \]
\[Q : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}'(\mathbb{R}^m) \]
\[R : \mathcal{S}'(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^m) \]
\[S : \mathcal{S}'(\mathbb{R}^n) \rightarrow \mathcal{S}'(\mathbb{R}^m) \]

are, respectively, continuous for the metric and uniform topologies if

\[\forall k \exists k', C \text{ s.t. } \|P \varphi\|_{(k')} \leq C \|\varphi\|_{(k)} \forall \varphi \in \mathcal{S}(\mathbb{R}^n) \]
\[\exists k, k', C \text{ s.t. } |Q \varphi| \leq C \|\varphi\|_{(k')} \|\psi\|_{(k)} \forall \varphi \in \mathcal{S}(\mathbb{R}^n) \Rightarrow \|R \varphi\|_{(k)} \leq C \]
\[\forall k, k' \exists C \text{ s.t. } |u(\varphi)| \leq \|\varphi\|_{(k)} \forall \varphi \in \mathcal{S}(\mathbb{R}^n) \Rightarrow \|Ru\|_{(k)} \leq C \]
\[\forall k' \exists k, C', C \text{ s.t. } \|u(\varphi)\|_{(k')} \leq \|\varphi\|_{(k)} \forall \varphi \in \mathcal{S}(\mathbb{R}^n) \Rightarrow |Su(\psi)| \leq C' \|\psi\|_{(k')} \forall \psi \in \mathcal{S}(\mathbb{R}^n). \]

The particular case of \(R \), for \(m = 0 \), where at least formally \(\mathcal{S}(\mathbb{R}^0) = \mathbb{C} \), corresponds to the reflexivity of \(\mathcal{S}(\mathbb{R}^n) \), that

\[R : \mathcal{S}'(\mathbb{R}^n) \rightarrow \mathbb{C} \text{ is cts. iff } \exists \varphi \in \mathcal{S}(\mathbb{R}^n) \text{ s.t. } Ru = u(\varphi) \text{ i.e. } (\mathcal{S}'(\mathbb{R}^n))^\prime = \mathcal{S}(\mathbb{R}^n). \]

In fact another extension of the middle two of these results corresponds to the Schwartz kernel theorem:

\[Q : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}'(\mathbb{R}^m) \text{ is linear and continuous} \]
\[\text{iff } \exists Q \in \mathcal{S}'(\mathbb{R}^m \times \mathbb{R}^n) \text{ s.t. } (Q(\varphi))(\psi) = Q(\varphi \otimes \psi) \forall \varphi \in \mathcal{S}(\mathbb{R}^m) \psi \in \mathcal{S}(\mathbb{R}^n). \]
\[R : \mathcal{S}'(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^m) \text{ is linear and continuous} \]
\[\text{iff } \exists R \in \mathcal{S}(\mathbb{R}^m \times \mathbb{R}^n) \text{ s.t. } (Ru)(z) = u(R(z, \cdot)). \]

Schwartz test functions are dense in tempered distributions

\[\mathcal{S}(\mathbb{R}^n) \hookrightarrow \mathcal{S}'(\mathbb{R}^n) \]

where the standard inclusion is via Lebesgue measure

(1.5) \[\mathcal{S}(\mathbb{R}^n) \ni \varphi \mapsto u_\varphi \in \mathcal{S}'(\mathbb{R}^n), \quad u_\varphi(\psi) = \int_{\mathbb{R}^n} \varphi(z)\psi(z)dz. \]
The basic operators of differentiation and multiplication are transferred to \(S'(\mathbb{R}^n)\) by duality so that they remain consistent with the \(1.5\):

\[
D_z u(\varphi) = u(-D_z \varphi) \\
f u(\varphi) = u(f \varphi) \quad \forall \ f \in S(\mathbb{R}^n).
\]

In fact multiplication extends to the space of function of polynomial growth:

\[
\forall \ \alpha \in \mathbb{N}_0^n \exists \ k \text{ s.t. } |D^{\alpha} z f(z)| \leq C \langle z \rangle^k.
\]

Thus such a function is a multiplier on \(S(\mathbb{R}^n)\) and hence by duality on \(S'(\mathbb{R}^n)\) as well.

4. Fourier transform

Many of the results just listed are best proved using the Fourier transform \(F:\)

\[
F : S(\mathbb{R}^n) \longrightarrow S(\mathbb{R}^n) \\
F \varphi(\zeta) = \hat{\varphi}(\zeta) = \int e^{-iz\zeta} \varphi(z) dz.
\]

This map is an isomorphism that extends to an isomorphism of \(S'(\mathbb{R}^n)\)

\[
F : S(\mathbb{R}^n) \longrightarrow S(\mathbb{R}^n) \\
F \varphi(D_z u) = \zeta_j F u, \ F(z_j u) = -D_{\zeta_j} F u
\]

and also extends to an isomorphism of \(L^2(\mathbb{R}^n)\) from the dense subset

\[
S(\mathbb{R}^n) \hookrightarrow L^2(\mathbb{R}^2) \text{dense}, \ ||F \varphi||_{L^2}^2 = (2\pi)^n ||\varphi||_{L^2}^2.
\]

5. Sobolev spaces

Plancherel’s theorem, \((??)\), is the basis of the definition of the (standard, later there will be others) Sobolev spaces.

\[
H^s(\mathbb{R}^n) = \{ u \in S'(\mathbb{R}^n); \ (1 + |\zeta|^2)^{s/2} \hat{u} \in L^2(\mathbb{R}^n) \} \\
||u||_s^2 = \int_{\mathbb{R}^n} (1 + |\zeta|^2)^s |\hat{u}(\zeta)| d\zeta,
\]

where we use the fact that \(L^2(\mathbb{R}^n) \hookrightarrow S'(\mathbb{R}^n)\) is a well-defined injection (regarded as an inclusion) by continuous extension from \(1.5\). Now,

\[
D^\alpha : H^s(\mathbb{R}^n) \longrightarrow H^{-|\alpha|}(\mathbb{R}^n) \ \forall \ s, \ \alpha.
\]

The Sobolev spaces are Hilbert spaces, so their duals are (conjugate) isomorphic to themselves. However, in view of our inclusion \(L^2(\mathbb{R}^n) \hookrightarrow S'(\mathbb{R}^n)\), we habitually identify

\[
(H^s(\mathbb{R}^n))' = H^{-s}(\mathbb{R}^n),
\]

with the ‘extension of the \(L^2\) paring’

\[
(u, v) = \int u(z)v(z) dz = (2\pi)^{-n} \int_{\mathbb{R}^n} \langle \zeta \rangle^s \hat{u} \cdot \langle \zeta \rangle^{-s} \hat{v} d\zeta.
\]

Note that then \(5\) is a linear, not a conjugate-linear, isomorphism since \(5\) is a real pairing.

The Sobolev spaces decrease with increasing \(s\),

\[
H^s(\mathbb{R}^n) \subset H^{s'}(\mathbb{R}^n) \ \forall \ s \geq s'.
\]
1. DISTRIBUTIONS

One essential property is the relationship between the ‘L^2 derivatives’ involved in the definition of Sobolev spaces and standard derivatives. Namely, the Sobolev embedding theorem:

\[s > \frac{n}{2} \implies H^s(\mathbb{R}^n) \subset C_0^\infty(\mathbb{R}^n) \]

\[= \{ u: \mathbb{R}^n \to \mathbb{C} \text{ its continuous and bounded} \}. \]

\[s > \frac{n}{2} + k, \ k \in \mathbb{N} \implies H^s(\mathbb{R}^n) \subset C_k^\infty(\mathbb{R}^n) \]

\[\overset{\text{def}}{=} \{ u: \mathbb{R}^n \to \mathbb{C} \text{ s.t. } D^\alpha u \in C_0^\infty(\mathbb{R}^n) \ \forall |\alpha| \leq k \}. \]

For positive integral s the Sobolev norms are easily written in terms of the functions, without Fourier transform:

\[u \in H^k(\mathbb{R}^n) \iff D^\alpha u \in L^2(\mathbb{R}^n) \ \forall |\alpha| \leq k \]

\[\|u\|_k^2 = \sum_{|\alpha| \leq k} \int_{\mathbb{R}^n} |D^\alpha u|^2 dz. \]

For negative integral orders there is a similar characterization by duality, namely

\[H^{-k}(\mathbb{R}^n) = \{ u \in S'(\mathbb{R}^n) \text{ s.t. } \exists u_\alpha \in L^2(\mathbb{R}^n), |\alpha| \geq k \}

\[u = \sum_{|\alpha| \leq k} D^\alpha u_\alpha \}. \]

In fact there are similar “Hölder” characterizations in general. For $0 < s < 1$, $u \in H^s(\mathbb{R}^n) \implies u \in L^2(\mathbb{R}^n)$ and

\[\int_{\mathbb{R}^{2n}} |u(z) - u(z')|^2 |z - z'|^{n+2s} dzdz' < \infty. \]

Then for $k < s < k + 1$, $k \in \mathbb{N}$ $u \in H^s(\mathbb{R}^2)$ is equivalent to $D^\alpha u \in H^{s-k}(\mathbb{R}^n)$ for all $|\alpha| \in k$, with corresponding (Hilbert) norm. Similar realizations of the norms exist for $s < 0$.

One simple consequence of this is that

\[C_\infty^\infty(\mathbb{R}^n) = \bigcap_k C^k(\mathbb{R}^n) = \{ u: \mathbb{R}^n \to \mathbb{C} \text{ s.t. } |D^\alpha u| \text{ is bounded } \forall \alpha \} \]

is a multiplier on all Sobolev spaces

\[C_\infty^\infty(\mathbb{R}^n) : H^s(\mathbb{R}^n) = H^s(\mathbb{R}^n) \ \forall \ s \in \mathbb{R}. \]

It follows from the Sobolev embedding theorem that

\[\bigcap_s H^s(\mathbb{R}^n) \subset C_\infty^\infty(\mathbb{R}^n); \]

in fact the intersection here is quite a lot smaller, but nowhere near as small as $\mathcal{S}(\mathbb{R}^n)$. To discuss decay at infinity, as will definitely want to do, we may use weighted Sobolev spaces.
The ordinary Sobolev spaces do not effectively define decay (or growth) at infinity. We will therefore also set
\[H^{m,\ell}(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n); \langle \zeta \rangle^{m} u \in H^{m}(\mathbb{R}^n) \}, \ m, \ell \in \mathbb{R}, \]
where the second notation is supported to indicate that \(u \in H^{m,\ell}(\mathbb{R}^n) \) may be written as a product \(\langle \zeta \rangle^{-\ell} H^{m}(\mathbb{R}^n) \),

Thus \(H^{m,\ell}(\mathbb{R}^n) \subset H^{m',\ell'}(\mathbb{R}^n) \) if \(m \geq m' \) and \(\ell \geq \ell' \), so the spaces are decreasing in each index. As consequences of the Schwartz structure theorem
\begin{equation}
\mathcal{S}'(\mathbb{R}^n) = \bigcup_{m,\ell} H^{m,\ell}(\mathbb{R}^n) \tag{1.10}
\end{equation}
\begin{equation}
\mathcal{S}(\mathbb{R}^n) = \bigcap_{m,\ell} H^{m,\ell}(\mathbb{R}^n). \tag{1.11}
\end{equation}

This is also true ‘topologically’ meaning that the first is an ‘inductive limit’ and the second a ‘projective limit’.

Similarly, using some commutation arguments
\begin{align*}
D_{z_j} : H^{m,\ell}(\mathbb{R}^n) &\longrightarrow H^{m-1,\ell}(\mathbb{R}^n), \ \forall \ m, \ell, \ \text{ll} \\
\times_{z_j} : H^{m,\ell}(\mathbb{R}^n) &\longrightarrow H^{m,\ell-1}(\mathbb{R}^n).
\end{align*}

Moreover there is symmetry under the Fourier transform
\[\mathcal{F} : H^{m,\ell}(\mathbb{R}^n) \longrightarrow H^{\ell,m}(\mathbb{R}^n) \text{ is an isomorphism } \forall \ m, \ell. \]

As with the usual Sobolev spaces, \(\mathcal{S}(\mathbb{R}^n) \) is dense in all the \(H^{m,\ell}(\mathbb{R}^n) \) spaces and the continuous extension of the \(L^2 \) paring gives an identification
\[H^{m,\ell}(\mathbb{R}^n) \cong (H^{-m,-\ell}(\mathbb{R}^n))^\prime \text{ from} \]
\[H^{m,\ell}(\mathbb{R}^n) \times H^{-m,-\ell}(\mathbb{R}^n) \ni u, v \mapsto (u, v) = \int u(z)v(z)dz'. \]

Let \(R_s \) be the operator defined by Fourier multiplication by \(\langle \zeta \rangle^s \) :
\begin{equation}
(1.11) \quad R_s : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n), \quad \widehat{R_s f}(\zeta) = \langle \zeta \rangle^s \hat{f}(\zeta). \tag{1.11}
\end{equation}

Lemma 1. If \(\psi \in \mathcal{S}(\mathbb{R}^n) \) then
\begin{equation}
(1.12) \quad M_s = [\psi, R_s] : H^t(\mathbb{R}^n) \longrightarrow H^{t-s+1}(\mathbb{R}^n) \tag{1.12}
\end{equation}
is bounded for each \(t \).

Proof. Since the Sobolev spaces are defined in terms of the Fourier transform, first conjugate and observe that (1.12) is equivalent to the boundeness of the integral operator with kernel
\begin{equation}
(1.13) \quad K_{s,t}(\zeta, \zeta') = (1 + |\zeta|^2)^{\frac{s-1}{2}} \hat{\psi}(\zeta - \zeta') \left((1 + |\zeta'|^2)^\frac{s}{2} - (1 + |\zeta|^2)^\frac{s}{2} \right) \left(1 + |\zeta'|^2 \right)^{-\frac{s}{2}} \quad \text{on } L^2(\mathbb{R}^n). \tag{1.13}
\end{equation}
If we insert the characteristic function for the region near the diagonal
\begin{equation}
(1.14) \quad |\zeta - \zeta'| \leq \frac{1}{4}(|\zeta| + |\zeta'|) \implies |\zeta| \leq 2|\zeta'|, \quad |\zeta'| \leq 2|\zeta|
\end{equation}
then $|\zeta|$ and $|\zeta'|$ are of comparable size. Using Taylor’s formula

\begin{align}
(1+|\zeta'|^2)^\frac{s}{2} - (1+|\zeta|^2)^\frac{s}{2} &= \left(1+|\zeta+ (1-t\zeta')|^2\right)^{\frac{s}{2}} - \left(1+|\zeta|^2\right)^\frac{s}{2} \\
&= \left(1+|\zeta'|^2\right)^{\frac{s}{2}} - \left(1+|\zeta|^2\right)^\frac{s}{2} = s(\zeta - \zeta') \cdot \int_0^1 (t\zeta + (1-t)\zeta') (1+|\zeta + (1-t)\zeta'|^2)^{\frac{s}{2}-1} dt
\end{align}

It follows that in the region (1.14) the kernel in (1.13) is bounded by

\begin{align}
C|\zeta - \zeta'|\|\hat{\psi}(\zeta - \zeta')|.
\end{align}

\begin{proof}
This is really a standard estimate for Sobolev spaces. Recall that the Sobolev norm is related to the L^2 norm by

\begin{align}
\|u\|_s = \|\langle D \rangle s u\|_{L^2}.
\end{align}

Here $\langle D \rangle s$ is the convolution operator with kernel defined by its Fourier transform

\begin{align}
\langle D \rangle s u = R_s * u, \quad \hat{R_s}(\zeta) = (1+|\zeta|^2)^\frac{s}{2}.
\end{align}

To get (1.17) use Lemma 1.

From (1.12), (writing 0 for the L^2 norm)

\begin{align}
\|\psi u\|_s &= \|R_s * (\psi u)\|_0 \leq \|\psi\|_{L^\infty} \|R_s u\|_0 + \|M_s u\|_0 \\
&\leq \|\psi\|_{L^\infty} \|R_s u\|_0 + C\|u\|_{s-1} \leq \|\psi\|_{L^\infty} \|u\|_s + C\|u\|_{s-1}.
\end{align}

This completes the proof of (1.17) and so of Lemma 2.
\end{proof}

\section{Multiplicativity}

Of primary importance later in our treatment of non-linear problems is some version of the multiplicative property

\begin{align}
A^s(\mathbb{R}^n) = \begin{cases}
H^s(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) & s \leq \frac{n}{2} \\
H^s(\mathbb{R}^n) & s > \frac{n}{2}
\end{cases} \text{ is a } C^\infty \text{ algebra.}
\end{align}

Here, a C^∞ algebra is an algebra with an additional closure property. Namely if $F : \mathbb{R}^N \rightarrow \mathbb{C}$ is a C^∞ function vanishing at the origin and $u_1, \ldots, u_N \in A^s$ are real-valued then

\begin{align}
F(u_1, \ldots, u_N) \in A^s.
\end{align}

I will only consider the case of real interest here, where s is an integer and $s > \frac{n}{2}$. The obvious place to start is

\begin{lemma}
If $s > \frac{n}{2}$ then

\begin{align}
\text{If } s > \frac{n}{2} \text{ then } u, \ v \in H^s(\mathbb{R}^n) \implies uv \in H^s(\mathbb{R}^n).
\end{align}
\end{lemma}
PROOF. We will prove this directly in terms of convolution. Thus, in terms of weighted Sobolev spaces \(u \in H^s(\mathbb{R}^n) = H^{s,0}(\mathbb{R}^n) \) is equivalent to \(\hat{u} \in H^{0,s}(\mathbb{R}^n) \). So \((1.22)\) is equivalent to
\[
\|u\|_{H^{0,s}} \leq C_s \|u\|_{H^{s,0}} \|v\|_{H^{s,0}} \text{ for } s > \frac{n}{2}.
\]
Using the density of \(\mathcal{S}(\mathbb{R}^n) \) it suffices to prove the estimate
\[
\|u \ast v\|_{H^{0,s}} \leq C_s \|u\|_{H^{s,0}} \|v\|_{H^{s,0}} \text{ for } s > \frac{n}{2}.
\]
Now, we can write \(u(\zeta) = \langle \zeta \rangle^{-s} u' \) etc and convert \((1.24)\) to an estimate on the \(L^2 \) norm of
\[
\langle \zeta \rangle^{-s} \int (\xi)^{-s} u' \langle \zeta - \xi \rangle^{-s} v' d\xi
\]
in terms of the \(L^2 \) norms of \(u' \) and \(v' \in \mathcal{S}(\mathbb{R}^n) \).

Writing out the \(L^2 \) norm as in the proof of Lemma 1 above, we need to estimate the absolute value of
\[
\int \int \int d\zeta d\xi d\eta |\zeta|^{2s} u_1(\xi) |\zeta - \xi|^{-s} v_1(\xi - \eta) |\xi - \eta|^{-s} v_2(\zeta - \eta)
\]
in terms of the \(L^2 \) norms of the \(u_i \) and \(v_i \). To do so divide the integral into the four regions,
\[
|\zeta - \xi| \leq \frac{1}{4}(|\zeta| + |\xi|), \quad |\zeta - \eta| \leq \frac{1}{4}(|\zeta| + |\eta|)
\]
\[
|\zeta - \xi| \leq \frac{1}{4}(|\zeta| + |\xi|), \quad |\zeta - \eta| \geq \frac{1}{4}(|\zeta| + |\eta|)
\]
\[
|\zeta - \xi| \geq \frac{1}{4}(|\zeta| + |\xi|), \quad |\zeta - \eta| \leq \frac{1}{4}(|\zeta| + |\eta|)
\]
\[
|\zeta - \xi| \geq \frac{1}{4}(|\zeta| + |\xi|), \quad |\zeta - \eta| \geq \frac{1}{4}(|\zeta| + |\eta|).
\]
Using \((1.14)\) the integrand in \((1.26)\) may be correspondingly bounded by
\[
C(|\zeta - \eta|^{-s} u_1(\xi)) v_1(\zeta - \xi) |\zeta - \xi|^{-s} u_2(\eta)) |\zeta - \eta|^{-s} v_2(\zeta - \eta)
\]
\[
C(|\zeta - \xi|^{-s} u_1(\xi)) v_1(\zeta - \xi) |\zeta - \xi|^{-s} u_2(\eta)) |\zeta - \xi|^{-s} v_2(\zeta - \eta)
\]
\[
C(|\zeta - \eta|^{-s} u_1(\xi)) v_1(\zeta - \eta) |\zeta - \eta|^{-s} u_2(\eta)) |\zeta - \eta|^{-s} v_2(\zeta - \eta)
\]
\[
C(|\eta|^{-s} u_1(\xi)) v_1(\zeta - \xi) |\zeta - \xi|^{-s} u_2(\eta)) |\zeta - \eta|^{-s} v_2(\zeta - \eta).
\]
Now applying Cauchy-Schwarz inequality, with the factors as indicated, and changing variables appropriately gives the desired estimate. \(\square\)

Next, we extend this argument to (many) more factors to get the following result which is close to the Gagliardo-Nirenberg estimates (since I am concentrating here on \(L^2 \) methods I will not actually discuss the latter).

Lemma 4. If \(s > \frac{n}{2} \), \(N \geq 1 \) and \(\alpha_i \in \mathbb{N}_0^k \) for \(i = 1, \ldots, N \) are such that
\[
\sum_{i=1}^N |\alpha_i| = T \leq s
\]
then
\[
u_i \in H^s(\mathbb{R}^n) \implies U = \prod_{i=1}^N D^{\alpha_i} u_i \in H^{s-T}(\mathbb{R}^n), \quad \|U\|_{H^{s-T}} \leq C_N \prod_{i=1}^N \|u_i\|_{H^s}.
\]
it follows that we need to estimate the L^2 norm in ζ of
\begin{equation}
\langle \zeta \rangle^{s-T} \int_{\xi} \left(\sum_i \langle \xi_i \rangle \right)^{\sum_i |\alpha_i|} \langle \xi^{s+\alpha_1} \rangle \langle \xi^{s+\alpha_2} \rangle \cdots \langle \xi^{s+\alpha_N} \rangle
\end{equation}
for N factors v_i which are in L^2 with the $a_i = |\alpha_i|$ non-negative integers summing to $T \leq s$. Again writing the square as the product with the complex conjugate it is enough to estimate integrals of the type
\begin{equation}
\int_{\{\xi,\eta\} \in \mathbb{R}^{2N}; \sum_i \xi = \sum_i \eta} \prod_i \langle \xi_i \rangle^{2s-2T} \langle \xi_i \rangle^{s+\alpha_1} \langle \xi_i \rangle^{s+\alpha_2} \cdots \langle \xi_i \rangle^{s+\alpha_N} \langle \eta_i \rangle^{s+\alpha_1} \langle \eta_i \rangle^{s+\alpha_2} \cdots \langle \eta_i \rangle^{s+\alpha_N}
\end{equation}
This is really an integral over \mathbb{R}^{2N-1} with respect to Lebesgue measure. Applying Cauchy-Schwarz inequality the absolute value is estimated by
\begin{equation}
\int_{\{\xi,\eta\} \in \mathbb{R}^{2N}; \sum_i \xi = \sum_i \eta} \prod_i \langle \xi_i \rangle^{2s-2T} \langle \xi_i \rangle^{s+\alpha_1} \langle \xi_i \rangle^{s+\alpha_2} \cdots \langle \xi_i \rangle^{s+\alpha_N} \langle \eta_i \rangle^{s+\alpha_1} \langle \eta_i \rangle^{s+\alpha_2} \cdots \langle \eta_i \rangle^{s+\alpha_N}
\end{equation}
The domain of integration, given by $\sum_i \eta_i = \sum_i \xi_i$, is covered by the finite number of subsets Γ_j on which in addition $|\eta_j| \geq |\eta_i|$ for all i. On this set we may take the variables of integration to be η_i for $i \neq j$ and the ξ_i. Then $|\eta_i| \geq |\sum_j \eta_j|/N$ so the second part of the integrand in (1.34) is estimated by
\begin{equation}
\langle \eta_j \rangle^{-2s+2a_j} \langle \sum_i \eta_i \rangle^{2s-2T} \prod_{i \neq j} \langle \eta_i \rangle^{-2s+2a_i} \leq C_N \langle \eta_j \rangle^{-2T+2a_j} \prod_{i \neq j} \langle \eta_i \rangle^{-2s+2a_i} \leq C_N \prod_{i \neq j} \langle \eta_i \rangle^{-2s}
\end{equation}
Thus the integral in (1.34) is finite and the desired estimate follows. \hfill \Box

Proposition 1. If $F \in C^\infty(\mathbb{R}^n \times \mathbb{R})$ and $u \in H^s(\mathbb{R}^n)$ for $s > \frac{n}{2}$ an integer then
\begin{equation}
F(z, u(z)) \in H^s_{\text{loc}}(\mathbb{R}^n).
\end{equation}
Proof. Since the result is local on \mathbb{R}^n we may multiply by a compactly supported function of z. In fact since $u \in H^s(\mathbb{R}^n)$ is bounded we also multiply by a compactly supported function in \mathbb{R} without changing the result. Thus it suffices to show that
\begin{equation}
F \in C^\infty_c(\mathbb{R}^n \times \mathbb{R}) \implies F(z, u(z)) \in H^s(\mathbb{R}^n).
\end{equation}
8. SOME BOUNDED OPERATORS

Now, Lemma 4 can be applied to show that $F(z, u(z)) \in H^s(\mathbb{R}^n)$. Certainly $F(z, u(z)) \in L^2(\mathbb{R}^n)$ since it is continuous and has compact support. Moreover, differentiating s times and applying the chain rule gives

$$D^\alpha F(z, u(z)) = \sum F_{\alpha_1, \ldots, \alpha_N}(z, u(z)) D^{\alpha_1}u \cdots D^{\alpha_N}u$$

where the sum is over all (finitely many) decomposition with $\sum_{i=1}^{N} \alpha_i \leq \alpha$ and the $F_i(z, u)$ are smooth with compact support, being various derivatives of $F(z, u)$. Thus it follows from Lemma 4 that all terms on the right are in $L^2(\mathbb{R}^n)$ for $|\alpha| \leq s$. □

Note that slightly more sophisticated versions of these arguments give the full result (1.21) but Proposition 1 suffices for our purposes below.

8. Some bounded operators

Lemma 5. If $J \in C^k(\Omega^2)$ is properly supported then the operator with kernel J (also denoted J) is a map

$$J : H^s_{\text{loc}}(\Omega) \longrightarrow H^k_{\text{loc}}(\Omega) \quad \forall \; s \geq -k.$$