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4 OCTOBER, 2016

RICHARD MELROSE

Abstract. Notes before and then after lecture.

Read:
This week: Ellipticity of polynomials and elliptic regularity. This pre-lecture

discussion is for both L8 and L9.

Before lecture

• First I want to do a little more localization. For any open set Ω ⊂ Rn we
have defined C∞(Ω) ⊂ C−∞(Ω). There are many space in between these
two, but clearly they need to admit lots of growth near the boundary. We
define

(1) Hs
loc(Ω) = {u ∈ C−∞(Ω);φu ∈ Hs(Rn) ∀ φ ∈ C∞c (Ω)}.

I add a little discussion on these spaces and where we are going with them
for you to check how much you have absorbed about localization and the
identifications and results implicit in this definition. If you can’t follow this
and are brave enough, let me know so I can try to fix things.

– First recall we can multiply distributions on Ω by smooth functions
and then φu ∈ C−∞c (Ω) = (C∞(Ω))′ ⊂ S ′(Rn) by ‘extension as zero’
corresponding by duality to the restriction map S(Rn) −→ C∞(Ω). So
it is meaningful to say φu ∈ Hs(Rn) and hence the definition makes
sense.

– Note that Hs
loc(Rn) is not contained in Hs(Rn). (Why?)

– Then you can think briefly about the topology. We can make Hs
loc(Ω)

into a metric space (it is a Fréchet space) by taking an exhaustion by
compact sets Kj of Ω and corresponding elements φj ∈ C∞c (Ω) such
that φj = 1 in a neighbourhood of Kj . From the requirement that
φju ∈ Hs(Rn) for all j it follows that u ∈ Hs

loc(Ω)? (Why?)
– Then we can define

(2) d(u, v) =
∑
j

2−j
‖φj(u− v)‖Hs

1 + ‖φj(u− v)‖Hs

in terms of Hs norms. Why is this a metric on Hs
loc(Ω) and why is the

space complete?
– Then you might like to check that any differential operator of order m

with smooth coefficients, P =
∑
|α|≤m

aα(x)Dα, aα ∈ C∞(Ω) defines a

continuous linear map P : Hs+m
loc (Ω) −→ Hs

loc(Ω) for every s.
1
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– To orient you a little let me continue. Such a differential operator is
said to be elliptic if the homogeneous polynomials depending on x ∈ Ω
as parameter,

(3) pm(x, ξ) =
∑
|α|=m

aα(x)ξα

do not vanish on Ω× (Rnξ \ {0}).
– Elliptic regularity says that for such an elliptic operator, if u ∈ C−∞(Ω)

and Pu ∈ Hs
loc(Ω) then u ∈ Hs+m

loc (Ω).
– This week we will prove this for constant coefficient differential oper-

ators.
• Another concept I want to introduce now – because it is rather useful and

important – is that of a symbol (technically of type 1 for the moment).
These form a linear space for each order m ∈ R, Sm(Rn) ⊂ C∞(Rn) and
are modelled on two case we already understand. Namely polynomials of
degree (less than or equal to) m and our ‘weight functions’ b = 〈x〉m =
(1 + |x|2)m/2. The latter satisfy estimates

(4) |∂αx b(x)| ≤ Cα〈x〉m−|α| ∀ α.

In words, each derivative lowers the order by one – polynomials do this too
of course.

Really we normally think of symbols as being ‘on the Fourier transform
side’. Clearly Sm(Rn) ⊂ S ′(Rn) and we can state the important result we
want as follows

Theorem 1. If b ∈ Sm(Rn) then v = Gb ∈ S ′(Rn) is such that

(5)
v∗ : Hs(Rn) −→ Hs−m(Rn) ∀ s ∈ R

if χ ∈ C∞c (Rn), χ = 1 near 0 then (1− χ)v ∈ S(Rn) =⇒ singsupp v ⊂ {0}.

• Suppose P (ξ) =
∑
|α|≤m

cαξ
α is a polynomial of degree m then the following

conditions are equivalent
(1) P is elliptic (of order m)

(6) Pm(ξ) =
∑
|α|=m

cαξ
α 6= 0 for ξ ∈ Rn.

(2) There exists c > 0 such that

(7) |P (ξ)| ≥ c|ξ|n in |ξ| > 1/c.

(3) There exists b ∈ S−m(Rn) such that

(8) Pb = 1− φ, φ ∈ C∞c (Rn).

• Probably not until Thursday. If P is an elliptic polynomial, which by
definition is the same as saying P (D) =

∑
|α|≤m

cαD
α, Dj = −i∂j , is an

elliptic operator, and u ∈ C−∞(Ω) is such that P (D)u ∈ Hs
loc(Ω) then

u ∈ Hs+m
loc (Ω).

• First we will prove that if P (D)u ∈ C∞(Ω) then u ∈ C∞(Ω) assuming of
course that P is elliptic. This follows by taking the b in the last part of the
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result immediately above and setting E = χGb where χ ∈ C∞c (Rn) is equal
to 1 near 0. This gives us a ‘convolution parameterix’

(9) P (D)E = δ + ψ, ψ ∈ C∞c (Rn).

The convolution operator defined by E satisfies

(10)

E∗ : C−∞c (Rn) −→ C−∞c (Rn),

singsupp(E ∗ f) ⊂ singsupp(f)

P (D)(E ∗ f) = (P (D)) ∗ f = f + ψ ∗ f.

Now apply this to fj = P (D)(φju) where φj ∈ C∞c (Ω) and φj = 1 in a
neighbourhood of Kj for an exhaustion Kj and it follows that

(11) P (D)(E ∗ (φju)) = E ∗ (P (D)(φju)) = E ∗ fj
= (P (D)E) ∗ (φju) = (δ + ψ) ∗ (φju) = φju+ C∞c (Rn).

However, singsupp(fj)∩Kj = ∅ so singsupp(φju)∩Kj = ∅ from the second
part of (10) but from this, for all j it follows that u ∈ C∞(Ω).

• The Sobolev version is similar (see L9).

After lecture

I discussed symbols on Rn and the properties of their inverse Fourier transforms.
Most of this is in the notes but let me go through it quickly here to make sure you
caught it.

First we define Sm(Rn) ⊂ C∞(Rn) by requiring that an element a have bounds

(12) |∂αξ a(ξ)| ≤ Cα〈ξ〉m−|α|.
For m = N this includes all polynomials of degree at most N. Moreover

(13) 〈ξ〉m ∈ Sm(Rn).

By applying the Leibniz rule for differentiation of a product we see that

(14) Sm(Rn) · Sm
′
(Rn) ⊂ Sm+m′

(Rn)

where in fact this is always an equality because of (13).
In fact using these facts we can see that

(15) a ∈ Sm(Rn)⇐⇒ |∂αξ ξβa| ≤ Cα,β〈ξ〉M−|α|+|β| ∀ α, β.

Proposition 1. If a ∈ Sm(Rn) then the inverse Fourier transform

(1) Ga = b+ e, b ∈ C−∞c (Rn), e ∈ S(Rn)
(2) b∗ : Hs(Rn) −→ Hs−m(Rn) for all s.
(3) singsupp(b) ⊂ {0}.

Proof. Using the product properties above it follows that

(16) |∂αξ ξβa| ≤ (1 + |ξ|)−n−1 if |α| ≥ |β| −m+ n+ 1.

The right side here is in L1(Rn) so from the standard properties of the Fourier
transform

(17) xα∂βxGa is continuous and bounded if |α| ≥ |β| −m+ n+ 1.

Taking 2N > |β| −m+ n+ 1 it follows that

(18) |x|2N∂βxGa is continuous and bounded .
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If we choose a cutoff χ ∈ C∞c (Rn) which is equal to 1 nea 0 (which is the only point
where |x|2N is not invertible) it follows that
(19)
(1 + |x|2)N∂βx (1− χ)Ga is continuous and bounded =⇒ e = (1− χ)Ga ∈ S(Rn).

Now, convolution of S and S ′ is well-defined with values in S ′ as is convolution
by C−∞c and S ′ and in both cases we know that

(20) b̂ ∗ u = b̂û, ê ∗ u = êû.

In fact we know that e∗ : Hs(Rn) −→ H∞(Rn) and hence we deduce the second
property in the statement from the fact that multiplication by a maps 〈ξ〉−sL2(Rn)
to 〈ξ〉−s+mL2(Rn).

The singular support condition on Ga, or equivalent b, follows from (18). �

I then proceeded to apply this to

(21) a =
1− χ
P (ξ)

∈ S−m(Rn)

where P is an elliptic polynomial and χ ∈ C∞c (Rn) vanishes on a sufficiently large
ball (to contain all the real zeros of P in its interior).

Another thing that I talked about, which is a little out of the main line of the
course, is that the singular support is in fact the support for sections of a sheaf.
The basic claim here is not quite obvious; it amounts to:

Lemma 1. The linear spaces C−∞(Ω)/C∞(Ω), defined for any open set Ω ⊂ Rn,
form a sheaf.

There is no real necessity for you to understand this, however enquiring minds like
to know these things. You might like to go through the arguments below to check
that the Hs

loc(Ω) form a sheaf as do the quotients C−∞(Ω)/Hs
loc(Ω). An element

u ∈ C−∞(Ω) projects to an element of the quotient space and the suuport in this
sense is singsuppHs(u) – this is the complement of the largest set on which u is eual
to an element of Hs

loc.
In fact showing that the quotients form a sheaf is a cohomological problem, in

sheaf or Čech cohomology. You might want to work out this relationsip youself, or
ask.

The main ingredient allows one to show that these are fine sheaves.

Proposition 2 (Partitions of unity). Let Ωα ⊂ Rn be a collection of open sets
indexed by α ∈ A, setting Ω =

⋃
α∈A Ωα ⊂ Rn, there exist elements ψα ∈ C∞(Ω)

indexed by A with the following properties

(1) For each α, supp(uα) ⊂ Ωα.
(2) 0 ≤ ψα ≤ a.
(3) For each K b Ω K ∩ supp(ψα) 6= ∅ for at most a finite set of α.
(4)

∑
α
ψα = 1.

The second last condition means that the sum in the last one if finite over any
compact subset, so this makes sense. The ψα are said to form a partition of unity
subordinate to the open cover Ωα of Ω.
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Proof. We have done most of the work for this. We showed that there is a sequence
φj ∈ C∞c (Ω) such that 0 ≤ φj ≤ 1, φj+1 = 1 in a neighbourhood of supp(φj) and
that any compact set K ⊂ {φj = 1} for some j.

We also showed that if K b Ω and Ωα is an open cover of K then there exist
χα ∈ C∞c (Ωα), with 0 ≤ χα ≤ 1, only a finite number not identically zero and such
that

(22)
∑
α

χα = 1 in a neighbourhood of K.

We can combine these to constructins by setting µ1 = φ1 and µj = φj − φj−1

for j ≥ 2. Then 0 ≤ µj ≤ 1, each compact set only meets a finite number of the
supp(µj) and

(23)
∑
j

µj = 1.

Now for each j choose χα,j as above such that (22) holds for each j, with Kj =
suppµj . Then set

(24) ψα =
∑
j

χα,j .

The sum is locally finite, so makes sense and ψα ∈ C∞(Ω). Each ψα,j has support
in Ωα, hence so does the sum and the final condition in the proposition follows from
(23) and the choice of the ψα,j . �

I did not really show that the spaces C−∞(Ω) form a sheaf. The restriction maps
are clear enough, if Ω1 ⊂ Ω2 are open then
(25)
C−∞(Ω2) 3 u 7−→ u

∣∣
Ω1
∈ C−∞(Ω1), u

∣∣
Ω1

(φ) = u(φ) ∀ φ ∈ C∞c (Ω1) ⊂ C∞c (Ω2).

I leave it to you to check the presheaf properties.
For the sheaf properties we are given uα ∈ C−∞(Ωα) for a collection of open sets,

with

(26) uα
∣∣
Ωα∩Ωβ

= uβ
∣∣
Ωα∩Ωβ

.

Given φ ∈ C∞c (Ω), Ω =
⋃
α Ωα, we can define

(27) u(φ) =
∑
α

uα(ψαφ)

using a partition of unity as above. This makes sense since ψαφ ∈ C∞c (Ωα). Notice
that this sum is finite, with the same number of terms, for all φ with supp(φ) ⊂
K b Ω. From this it follows readily that u ∈ C−∞(Ω).

You can check that u does not depend on the choice of the partition of unity,
because of (26), but we actually do not need to do so. Just check that u ∈ C−∞(Ω)
has the property

(28) u
∣∣
Ωα

= uα, i.e. u(φ) = uα(φ) ∀ φ ∈ C∞c (Ωα).

Indeed, if supp(φ) b Ωα then for every β 6= α, supp(φψβ) b Ωα ∩ Ωβ , so in the
(finite) sum (27) in all the terms with β 6= α we can use (26) to replace uβ by uα,
so indeed

(29) u(φ) =
∑
β

uα(φψβ) = uα(φ).
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To see the uniqueness, just note that (27) follows from (28).

Proof of Lemma 1. I leave it to you to show that the quotients

F (Ω) = C−∞(Ω)/C∞(Ω)

form a presheaf – this is always the case for the quotient of a sheaf of linear spaces
by a subsheaf.

It is the sheaf condition on the quotient that is not so obvious. What we need to
show is that if uα ∈ F (Ωα) for a collection of open sets and uα

∣∣
Ωα∩Ωβ

= uβ
∣∣
Ωα∩Ωβ

then we need to find u ∈ F (Ω), Ω =
⋃
α Ωα, such that u

∣∣
Ωα

= uα. We can choose

vα ∈ C−∞(Ωα) representing uα = [vα], but then the compatibility condition be-
comes

(30) vα,β = vα − vβ ∈ C∞(Ωα ∩ Ωβ)

where I have dropped the notation for the restriction maps. The claim is that there
exist wα ∈ C∞(Ωα) such that

(31) wα
∣∣
Ωα∩Ωβ

− wβ
∣∣
Ωα∩Ωβ

= vα,β ∈ C∞(Ωα ∩ Ωβ)

for all α, β. This is the vanishing of a Čech obstruction.
To arrange (31) we define

(32) wα =
∑
β 6=α

vα,βψβ ∈ C∞(Ωα)

where ψα is a partition of unity as discussed above. This makes sense, even though
vα,β is only defined on Ωα ∩Ωβ , since ψβ ∈ C∞(Ω) has support in Ωβ . This means
that ψβ vanishes outside a relatively closed subset of Ωβ which means it vanishes
in a neighbourhood of Ωα \ Ωβ . So each of the terms in (32) is initially defined on
Ωα∩Ωβ but vanishes near Ωα\Ωβ so the extension as zero outside this set is smooth
on Ωα.

Now observe that (31) does indeed hold for this choice of the wα’s. Restricted
to the intersection of Ωα and Ωβ the difference can be written

(33)

∑
γ 6=α

vα,γψγ −
∑
γ 6=β

vβ,γψγ

= vα,βψβ − vβ,αψα +
∑
γ 6=α,β

vα,βψγ

= vα,β

where we use the fact that vβ,γ is antisymmetric and vβ,γ + vγ,α + vα,β = 0 on the
triple intersections Ωα ∩ Ωβ ∩ Ωγ .

Now, replace vα by the new representative vα − wα and observe that the sheaf
property for C−∞(Ω) gives a grobal representative which solves the problem. �

Make sure you understand that if v ∈ C∞(Ω1 ∩ Ω2) for two open sets and χ ∈
C∞(Ω1 ∪ Ω2) has support in Ω2 then χu ∈ C∞(Ω1) is well-defined by extending it
as zero outside the intersection.
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