18.155 LECTURE 4, 2015

RICHARD MELROSE

ABSTRACT. Notes before and after lecture — if you have questions, ask!

Read: Notes Chapter 3, Sections 4 and 5.

BEFORE LECTURE

In lecture 3 we showed that S(R™) (in fact C>°(R™)) is dense in L?(R™) and using
that and the identity

/ﬁ: (2w)"/u@, u, v € S(R™)

we concluded that the Fourier transform extends by continuity to an (essentially
isometric) isomorphism F : L?(R") — L?(R"™). Make sure you understand why
this is also the restriction of the map we had previously defined F : §'(R") —
S'(R™).

~—

(14 |z|?)%/? is a multiplier on S(R™) and hence S'(R™).

Sobolev spaces, H*(R™) 2 u iff u € S’(R™) and (1 + |¢]?)%/%4 € L*(R™).
Density of S(R™) in H*(R").

Sobolev spaces of positive integral order.

(Didn’t do this) Sobolev spaces of negative integral order.

Sobolev embedding H*(R™) C CJ(R") if s > n/2.

Sobolev spaces of fractional order.

AFTER LECTURE

The characterization of the condition u € H*(R") for u € L?(R") and 0 < s < 1
is not in the notes (I think). Here is more-or-less what I did in class today.

We know that if s > 0 and k is the integral part of s then w € H*(R") is
equivalent to the statement that D%u € H*~¥(R"), |a| < k. So we can concentrate
on the case s € (0,1).

Proposition 1. If0 < s < 1 then u € H*(R"™) if and only if u € L>(R™) and
_ 2
(1) / dedy < 0.

o=y

Proof. If u € L?(R™) the integrand in (1) is a non-negative measurable function
so the finiteness of the integral is a well-defined condition. In fact the part of the
integral away from the diagonal, x = y, is already finite — if ¢ > 0 then
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To see this use the inequality, |u(z)—u(y)|? < 2|u(x)|?+2|u(y|? giving two integrals
which are the same, so that after changing variables and using Fubini’s theorem

2
(3) // — n|+25d33dy—/|u )| dx/ |2| 7" 2% d
|z—y|>c |$ Yl |z|>c

where both factors are finite. Thus the significance of (1) is in the convergence
across the diagonal.

Now, if u € S(R™) then (1) does indeed hold. We have just seen the convergence
when |z — y| > ¢ and in |z — y| < ¢ Taylor’s formula (or the mean value theorem)
gives, in view of the rapid decay of the derivative

(4) lu(z) —u(y)| < Clz —y[(1+[z))7", [z —y[<c

so this part of the integral is also finite

2
// n5r21| drdy < C’/ (1+|z|) 2”dx/ |z| 7252y
|lz—y|<c |$ - y| |z|<c

and since the power of |z| is strictly larger than —n the integral converges across
|z| = 0.

So, now consider the integral (1) when v € S(R™); we have just seen that it is
a well-defined Lebesgue integral. We can change variable to give, again by Fubini
(which tells us that the first integral converges a.e. and the result is integrable)

[aetel > [ ute )~ utw) Py,

Then we use Plancherels’ formula on the inner integral to write it as
(6)
[t~ )Py = 20 [P+ - uC)Pde,

Flulz+-) —u()(€) = (¢ - Di(§) =
ezz £ 2
Jacel 2 [+ —uttay = [aerelaor, re - [l

As it must by Fubini’s theorem, the integrand defining F'(£) does indeed con-
verge. Near infinity the integrand is bounded by 2|z|~"~2¢ which is integrable
and near zero, by Taylor’s formula, it is bounded by C|z|="~25*2 which is also
integrable. Furthermore it is clearly rotation-invariant. Applying an orthogonal
transformation F(O¢) = F(&) using the change of variable to O'z. Thus in fact
F(&) = F(|¢]). It is also homogeneous of degree 2s as can be seen by scaling the
variable. Thus in fact

(7) F(§) = cl¢f**, ¢>0
So in fact for u € S(R™),
_ 2
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Since 1 + |£€]?® is bounded above and below by positive multiples of (1 + |£]?)*

wle 3
<|u||L2+/ fut |n+25 d dy>

is a Hilbert norm which is equivalent to the H® norm on S(R™).
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So this proves the result; the density of S(R™) in H*(R™) means that if v €
H*(R™) then we can find a sequence u, € S(R™) such that u, — u in L?(R")
and w,, converges in H*(R™) (to u of course). This implies the convergence of the
integral (1) for u,, as n — co and hence that the integrals for u over |z —y| > § are
bounded by a fixed constant independent of § > 0. This, by monotone convergence,
implies that the integral for w is finite and conversely, and that (8) holds in the
limit. O
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