
18.155 LECTURE 4, 2015

RICHARD MELROSE

Abstract. Notes before and after lecture – if you have questions, ask!

Read: Notes Chapter 3, Sections 4 and 5.

Before lecture

In lecture 3 we showed that S(Rn) (in fact C∞c (Rn)) is dense in L2(Rn) and using
that and the identity ∫

ûv̂ = (2π)n
∫
uv, u, v ∈ S(Rn)

we concluded that the Fourier transform extends by continuity to an (essentially
isometric) isomorphism F : L2(Rn) −→ L2(Rn). Make sure you understand why
this is also the restriction of the map we had previously defined F : S ′(Rn) −→
S ′(Rn).

• (1 + |x|2)s/2 is a multiplier on S(Rn) and hence S ′(Rn).
• Sobolev spaces, Hs(Rn) 3 u iff u ∈ S ′(Rn) and (1 + |ξ|2)s/2û ∈ L2(Rn).
• Density of S(Rn) in Hs(Rn).
• Sobolev spaces of positive integral order.
• (Didn’t do this) Sobolev spaces of negative integral order.
• Sobolev embedding Hs(Rn) ⊂ C00(Rn) if s > n/2.
• Sobolev spaces of fractional order.

After lecture

The characterization of the condition u ∈ Hs(Rn) for u ∈ L2(Rn) and 0 < s < 1
is not in the notes (I think). Here is more-or-less what I did in class today.

We know that if s > 0 and k is the integral part of s then u ∈ Hs(Rn) is
equivalent to the statement that Dαu ∈ Hs−k(Rn), |α| ≤ k. So we can concentrate
on the case s ∈ (0, 1).

Proposition 1. If 0 < s < 1 then u ∈ Hs(Rn) if and only if u ∈ L2(Rn) and

(1)

∫∫
|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞.

Proof. If u ∈ L2(Rn) the integrand in (1) is a non-negative measurable function
so the finiteness of the integral is a well-defined condition. In fact the part of the
integral away from the diagonal, x = y, is already finite – if c > 0 then

(2)

∫∫
|x−y|>c

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞.
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To see this use the inequality, |u(x)−u(y)|2 ≤ 2|u(x)|2+2|u(y|2 giving two integrals
which are the same, so that after changing variables and using Fubini’s theorem

(3)

∫∫
|x−y|>c

|u(x)|2

|x− y|n+2s
dxdy =

∫
|u(x)|2dx

∫
|z|>c

|z|−n−2sdz

where both factors are finite. Thus the significance of (1) is in the convergence
across the diagonal.

Now, if u ∈ S(Rn) then (1) does indeed hold. We have just seen the convergence
when |x− y| > c and in |x− y| < c Taylor’s formula (or the mean value theorem)
gives, in view of the rapid decay of the derivative

(4) |u(x)− u(y)| ≤ C|x− y|(1 + |x|)−n, |x− y| ≤ c
so this part of the integral is also finite

(5)

∫∫
|x−y|<c

|u(x)− u(y)|2

|x− y|n+2s
dxdy ≤ C

∫
(1 + |x|)−2ndx

∫
|z|<c

|z|−n−2s+2dz

and since the power of |z| is strictly larger than −n the integral converges across
|z| = 0.

So, now consider the integral (1) when u ∈ S(Rn); we have just seen that it is
a well-defined Lebesgue integral. We can change variable to give, again by Fubini
(which tells us that the first integral converges a.e. and the result is integrable)∫

dz|z|−n−2s
∫
|u(z + y)− u(y)|2dy.

Then we use Plancherels’ formula on the inner integral to write it as
(6) ∫

|u(z + y)− u(y)|2dy = (2π)−n
∫
|F(u(z + ·)− u(·))|2dξ,

F(u(z + ·)− u(·))(ξ) = (ez·ξ − 1)û(ξ) =⇒∫
dz|z|−n−2s

∫
|u(z + y)− u(y)|2dy =

∫
dξF (ξ)|û(ξ)|2, F (ξ) =

∫
|eiz·ξ − 1|2

|z|n+2s
dz.

As it must by Fubini’s theorem, the integrand defining F (ξ) does indeed con-
verge. Near infinity the integrand is bounded by 2|z|−n−2s which is integrable
and near zero, by Taylor’s formula, it is bounded by C|z|−n−2s+2 which is also
integrable. Furthermore it is clearly rotation-invariant. Applying an orthogonal
transformation F (Oξ) = F (ξ) using the change of variable to Otz. Thus in fact
F (ξ) = F (|ξ|). It is also homogeneous of degree 2s as can be seen by scaling the
variable. Thus in fact

(7) F (ξ) = c|ξ|2s, c > 0.

So in fact for u ∈ S(Rn),

(8)

∫∫
|u(x)− u(y)|2

|x− y|n+2s
dxdy = c

∫
|ξ|2s|û(ξ)|2dξ.

Since 1 + |ξ|2s is bounded above and below by positive multiples of (1 + |ξ|2)s(
‖u‖2L2 +

∫∫
|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

is a Hilbert norm which is equivalent to the Hs norm on S(Rn).
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So this proves the result; the density of S(Rn) in Hs(Rn) means that if u ∈
Hs(Rn) then we can find a sequence un ∈ S(Rn) such that un → u in L2(Rn)
and un converges in Hs(Rn) (to u of course). This implies the convergence of the
integral (1) for un as n→∞ and hence that the integrals for u over |x− y| > δ are
bounded by a fixed constant independent of δ > 0. This, by monotone convergence,
implies that the integral for u is finite and conversely, and that (8) holds in the
limit. �
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