18.155 LECTURE 3, 15 SEPTEMBER 2016

RICHARD MELROSE

ABSTRACT. Notes before and then after lecture.

Read: Notes Chapter 3, Section 2 and first part of Section 3.

Central result for today is that /27" F extends by continuity and density from
S to a unitary operator on L?(R") and that this allows us to define the Sobolev
spaces H*(R™) C §'(R") for each s € R as the inverse Fourier transforms of the
weighted L? spaces (1 + |£]?)~5/2L?(R™).

BEFORE LECTURE

e Tempered distributions and operations.
Differentiation, multiplication by functions of slow growth, tranlation,
Fourier tranform, relations.
e Compactly supported smooth functions — C°(R™) C S(R™) consisting of
the functions which vanish outside some compact set.
Bump functions.
Topology — think about it, don’t worry!
e Density of C°(R") in S(R™).
e Convolution
C=(R™) « LL(R™) C C*(R™).
e Density of test functions in square-integrable functions
e Fourier transform of square-integrable functions
e Sobolev spaces
I got to about here.
e Sobolev spaces of integral order
e Density of S(R") in H*(R"™).
e Sobolev embedding (probably will not get this far).

AFTER LECTURE

e I talked in a slightly abstract way (which is not in the notes I think) about
the transfer of operations on S(R™) to S’(R™), the latter being the dual
of the former. We embed S(R") — S(R"™) using the (complex linear, not
sesquilinear) integral pairing

1) 0.0) = [ o0, 0. v e SE.
On the other hand we have the ‘duality pairing’
(2) S'(R") x S(R") 5 (u,¢) —> u(¢) € C

and we are using (1) to define

3) Us(¥) = (0, 9).
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When we show that S(R™) is dense in S’(R™)

[You might like to work out a proof for yourself along the following
lines. By density we mean ‘in the weak topology’, so all we need to show
is that if uw € S’(R™) then there exists a sequence u, € S(R™) such that
(tn, ) — u(1p) for each ¢ € S(R™) — no uniformity. To do this you can
use our sequence of cutoffs (from later in this lecture ....) pp(z) = p(z/k)
where p1 € C°(R™) has p(z) = 1 in |z| < 3. If you work at it a bit you can
see that up = G(uk(§)F (pr(x)u) is a sequence in C°(R™) with the desired
properties, we will do this later.]

Anyway, the operations we consider 4 : S(R") — S(R") are continuous
linear maps which have transposes A? : S(R") — S(R"™) also continuous
linear maps, such that

(Ad,¥) = (6, A'), ¥ &, ¥ € S(R™)
then we just define
A: S (R™) — S'(R™) by Au(v) = u(A').

As the composite uo A? Au is then continuous, so defines a map as indicated.
We have done this for A = 9;, A" = —A, A = xf where f is of slow
growth (e.g. a polynomial) and then A" = A. Also A = T,, translation
by y € R™ and then A* = T_, (the inverse of T}) and most importantly
A = F = A'. Convolution with an element of S(R™) will give another
example.
I said in lecture that there are continuous linear maps A : S(R") —
S(R™) which do not have ‘formal’ transposes acting on S(R™.; One such
example is a finite rank operator

Ap = Zvj(éf’)%/fj, v; € S'(R™), ¢¥; € S(R™).
J

The formal transpose of this (assuming v; ¢ S(R™) maps S'(R™) to S'(R™),
as it must, but does not map S(R™) to S(R™).

To prove the density of S(R™) in L?(R") I observed from standard proper-
ties of the Lebesgue integral that CO(R™) C L?(R") is dense, so it sufficies
to prove that any continuous function of compact support can be approxi-
mated uniformly by a sequence in

C¥(R™) = {¢ € S(R");3 R, ¢(z) =0 in || > R}.

[Really we wan the sequuence to vanish outside a fixed ball but this could
be arranged afterwards anyway].

e I did this using the convolution integral. If u, v € C2(R") both vanish in

|z] > R then

u*v(x) = /u(a: —y)u(y)du = /u(y)v(aj —y)dy = v xu(x) € CO(R™)

is a well-defined Riemann integral and vanishes when |z| > R.
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The continuity in x follows by direct estimation

(9) IU*U(w+2)—U*v(w)\=|/(U(x+z—y)—U(w—y)v(y)I

(12)

(13)

< sup o] sup Jo(z + = —y) — v(z — y)|
lyl<R
and the uniform continuity of v shows the right side tends to zero as |z| — 0.
If v € C®(R") and u € CO(R™) a similar argument shows that U x v €
C°(R™). Namely to prove on derivative exists and is continuous compute
the difference quotient using the second version of the convolution
uxv(z+tej) —uxv(z) u(x +te; —y) —u(z —y))
= [ u(y) '
t t

and using the FTC or intermediate value theorem to show that the inte-
grand on the right converges uniformly to the derivative. So in fact

Oju*v = ux* (0jv)
so we can immediately argue by induction that U x v € C(R") if v €
C(R™).
I also proved the density directly by a standard argument using an ‘approx-
imate identity’ (for convolution). Namely if ¢ > 0, ¢(z) = 0 in |z| > 1,
¢ € C°(R™) and [ ¢ =1 (which we can easily arrange with a bump func-
tion) then ¢ (z) = k"¢ (kz) € C°(R™) and

u * ¢p, — u uniformly if u € CO(R™).

The proof is to write the difference ‘cleverly’ using the fact that the nor-
malization is chosen so f ¢r =1 for all &k :

wk bu(z) — ufz) = / (u(z — y) — u(z)) d(v)dy.

Then the difference can be estimated using the positivity of ¢ and the fact
that ¢ (y) vanishes in |y| > 1/k

(14)  Ju* op(z) — u(z)] < / lu(z —y) —u(@)|¢x(y)dy < sup |u(z —y) — u(z)]

ly|<1/k

and the uniform continuity of w.
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