18.155 LECTURE 3, 15 SEPTEMBER 2016

RICHARD MELROSE

ABSTRACT. Notes before and then after lecture.

Read: Notes Chapter 3, Section 2 and first part of Section 3.

Central result for today is that $\sqrt{2\pi^n}\mathcal{F}$ extends by continuity and density from \mathcal{S} to a unitary operator on $L^2(\mathbb{R}^n)$ and that this allows us to define the Sobolev spaces $H^s(\mathbb{R}^n) \subset \mathcal{S}'(\mathbb{R}^n)$ for each $s \in \mathbb{R}$ as the inverse Fourier transforms of the weighted L^2 spaces $(1 + |\xi|^2)^{-s/2}L^2(\mathbb{R}^n)$.

Before lecture

- Tempered distributions and operations. Differentiation, multiplication by functions of slow growth, tranlation, Fourier transform, relations.
- Compactly supported smooth functions C[∞]_c(ℝⁿ) ⊂ S(ℝⁿ) consisting of the functions which vanish outside some compact set. Bump functions.

Topology – think about it, don't worry!

- Density of $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$ in $\mathcal{S}(\mathbb{R}^{n})$.
- Convolution

 $\mathcal{C}^{\infty}_{c}(\mathbb{R}^{n}) * L^{1}_{c}(\mathbb{R}^{n}) \subset \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n}).$

- Density of test functions in square-integrable functions
- Fourier transform of square-integrable functions
- Sobolev spaces

(2)

- I got to about here.
- Sobolev spaces of integral order
- Density of $\mathcal{S}(\mathbb{R}^n)$ in $H^s(\mathbb{R}^n)$.
- Sobolev embedding (probably will not get this far).

AFTER LECTURE

• I talked in a slightly abstract way (which is not in the notes I think) about the transfer of operations on $\mathcal{S}(\mathbb{R}^n)$ to $\mathcal{S}'(\mathbb{R}^n)$, the latter being the dual of the former. We embed $\mathcal{S}(\mathbb{R}^n) \hookrightarrow \mathcal{S}(\mathbb{R}^n)$ using the (complex linear, not sesquilinear) integral pairing

(1)
$$\langle \phi, \psi \rangle = \int \phi \psi, \ \phi, \ \psi \in \mathcal{S}(\mathbb{R}^n).$$

On the other hand we have the 'duality pairing'

$$\mathcal{S}'(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \ni (u,\phi) \longmapsto u(\phi) \in \mathbb{C}$$

and we are using (1) to define

(3)
$$U_{\phi}(\psi) = \langle \phi, \psi \rangle.$$

RICHARD MELROSE

When we show that $\mathcal{S}(\mathbb{R}^n)$ is dense in $\mathcal{S}'(\mathbb{R}^n)$

[You might like to work out a proof for yourself along the following lines. By density we mean 'in the weak topology', so all we need to show is that if $u \in \mathcal{S}'(\mathbb{R}^n)$ then there exists a sequence $u_n \in \mathcal{S}(\mathbb{R}^n)$ such that $\langle u_n, \psi \rangle \longrightarrow u(\psi)$ for each $\psi \in \mathcal{S}(\mathbb{R}^n)$ – no uniformity. To do this you can use our sequence of cutoffs (from later in this lecture) $\mu_k(x) = \mu(x/k)$ where $\mu \in \mathcal{C}^{\infty}_c(\mathbb{R}^n)$ has $\mu(x) = 1$ in $|x| < \frac{1}{2}$. If you work at it a bit you can see that $u_k = \mathcal{G}(\mu_k(\xi)\mathcal{F}(\mu_k(x)u)$ is a sequence in $\mathcal{C}^{\infty}_c(\mathbb{R}^n)$ with the desired properties, we will do this later.]

Anyway, the operations we consider $A : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$ are continuous linear maps which have transposes $A^t : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$ also continuous linear maps, such that

(4)
$$\langle A\phi,\psi\rangle = \langle \phi,A^t\psi\rangle, \ \forall \ \phi,\ \psi \in \mathcal{S}(\mathbb{R}^n)$$

then we just *define*

(5)
$$A: \mathcal{S}'(\mathbb{R}^n) \longrightarrow \mathcal{S}'(\mathbb{R}^n) \text{ by } Au(\psi) = u(A^t\psi).$$

As the composite $u \circ A^t A u$ is then continuous, so defines a map as indicated.

We have done this for $A = \partial_j$, $A^t = -A$, $A = \times f$ where f is of slow growth (e.g. a polynomial) and then $A^t = A$. Also $A = T_y$, translation by $y \in \mathbb{R}^n$ and then $A^t = T_{-y}$ (the inverse of T_y) and most importantly $A = \mathcal{F} = A^t$. Convolution with an element of $\mathcal{S}(\mathbb{R}^n)$ will give another example.

I said in lecture that there are continuous linear maps $A : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$ which do not have 'formal' transposes acting on $\mathcal{S}(\mathbb{R}^n)$.; One such example is a finite rank operator

(6)
$$A\phi = \sum_{j} v_j(\phi)\psi_j, \ v_j \in \mathcal{S}'(\mathbb{R}^n), \ \psi_j \in \mathcal{S}(\mathbb{R}^n).$$

The formal transpose of this (assuming $v_j \notin \mathcal{S}(\mathbb{R}^n)$ maps $\mathcal{S}'(\mathbb{R}^n)$ to $\mathcal{S}'(\mathbb{R}^n)$, as it must, but does not map $\mathcal{S}(\mathbb{R}^n)$ to $\mathcal{S}(\mathbb{R}^n)$.

• To prove the density of $\mathcal{S}(\mathbb{R}^n)$ in $L^2(\mathbb{R}^n)$ I observed from standard properties of the Lebesgue integral that $\mathcal{C}^0_c(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$ is dense, so it sufficies to prove that any continuous function of compact support can be approximated uniformly by a sequence in

(7)
$$\mathcal{C}_{c}^{\infty}(\mathbb{R}^{n}) = \{ \phi \in \mathcal{S}(\mathbb{R}^{n}); \exists R, \ \phi(x) = 0 \text{ in } |x| > R \}.$$

[Really we wan the sequuence to vanish outside a fixed ball but this could be arranged afterwards anyway].

• I did this using the convolution integral. If $u, v \in C^0_c(\mathbb{R}^n)$ both vanish in |x| > R then

(8)
$$u * v(x) = \int u(x-y)v(y)du = \int u(y)v(x-y)dy = v * u(x) \in \mathcal{C}^0_c(\mathbb{R}^n)$$

is a well-defined Riemann integral and vanishes when |x| > R.

2

The continuity in x follows by direct estimation

(9)
$$|u * v(x + z) - u * v(x)| = |\int (u(x + z - y) - u(x - y)v(y)|$$

 $\leq \sup |v| \sup_{|y| \leq R} |v(x + z - y) - v(x - y)|$

and the *uniform* continuity of v shows the right side tends to zero as $|z| \to 0$.

• If $v \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$ and $u \in \mathcal{C}^{0}_{c}(\mathbb{R}^{n})$ a similar argument shows that $U * v \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$. Namely to prove on derivative exists and is continuous compute the difference quotient using the second version of the convolution

(10)
$$\frac{u * v(x + te_j) - u * v(x)}{t} = \int u(y) \frac{u(x + te_j - y) - u(x - y)}{t}$$

and using the FTC or intermediate value theorem to show that the integrand on the right converges uniformly to the derivative. So in fact

(11)
$$\partial_j u * v = u * (\partial_j v)$$

so we can immediately argue by induction that $U * v \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$ if $v \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$.

• I also proved the density directly by a standard argument using an 'approximate identity' (for convolution). Namely if $\phi \ge 0$, $\phi(x) = 0$ in |x| > 1, $\phi \in C_c^{\infty}(\mathbb{R}^n)$ and $\int \phi = 1$ (which we can easily arrange with a bump function) then $\phi_k(x) = k^{-n}\phi(kx) \in C_c^{\infty}(\mathbb{R}^n)$ and

(12)
$$u * \phi_k \to u$$
 uniformly if $u \in \mathcal{C}^0_c(\mathbb{R}^n)$.

The proof is to write the difference 'cleverly' using the fact that the normalization is chosen so $\int \phi_k = 1$ for all k:

(13)
$$u * \phi_k(x) - u(x) = \int (u(x-y) - u(x)) \phi_k(y) dy.$$

Then the difference can be estimated using the positivity of ϕ and the fact that $\phi_k(y)$ vanishes in |y| > 1/k

(14)
$$|u * \phi_k(x) - u(x)| \le \int |u(x-y) - u(x)|\phi_k(y)dy \le \sup_{|y|\le 1/k} |u(x-y) - u(x)|$$

and the uniform continuity of u.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail \ address: rbm@math.mit.edu$