
18.155 LECTURE 3, 15 SEPTEMBER 2016

RICHARD MELROSE

Abstract. Notes before and then after lecture.

Read: Notes Chapter 3, Section 2 and first part of Section 3.
Central result for today is that

√
2πnF extends by continuity and density from

S to a unitary operator on L2(Rn) and that this allows us to define the Sobolev
spaces Hs(Rn) ⊂ S ′(Rn) for each s ∈ R as the inverse Fourier transforms of the
weighted L2 spaces (1 + |ξ|2)−s/2L2(Rn).

Before lecture

• Tempered distributions and operations.
Differentiation, multiplication by functions of slow growth, tranlation,

Fourier tranform, relations.
• Compactly supported smooth functions – C∞c (Rn) ⊂ S(Rn) consisting of

the functions which vanish outside some compact set.
Bump functions.
Topology – think about it, don’t worry!

• Density of C∞c (Rn) in S(Rn).
• Convolution

C∞c (Rn) ∗ L1
c(Rn) ⊂ C∞c (Rn).

• Density of test functions in square-integrable functions
• Fourier transform of square-integrable functions
• Sobolev spaces

I got to about here.
• Sobolev spaces of integral order
• Density of S(Rn) in Hs(Rn).
• Sobolev embedding (probably will not get this far).

After lecture

• I talked in a slightly abstract way (which is not in the notes I think) about
the transfer of operations on S(Rn) to S ′(Rn), the latter being the dual
of the former. We embed S(Rn) ↪→ S(Rn) using the (complex linear, not
sesquilinear) integral pairing

(1) 〈φ, ψ〉 =

∫
φψ, φ, ψ ∈ S(Rn).

On the other hand we have the ‘duality pairing’

(2) S ′(Rn)× S(Rn) 3 (u, φ) 7−→ u(φ) ∈ C
and we are using (1) to define

(3) Uφ(ψ) = 〈φ, ψ〉.
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When we show that S(Rn) is dense in S ′(Rn)
[You might like to work out a proof for yourself along the following

lines. By density we mean ‘in the weak topology’, so all we need to show
is that if u ∈ S ′(Rn) then there exists a sequence un ∈ S(Rn) such that
〈un, ψ〉 −→ u(ψ) for each ψ ∈ S(Rn) – no uniformity. To do this you can
use our sequence of cutoffs (from later in this lecture ....) µk(x) = µ(x/k)
where µ ∈ C∞c (Rn) has µ(x) = 1 in |x| < 1

2 . If you work at it a bit you can
see that uk = G(µk(ξ)F(µk(x)u) is a sequence in C∞c (Rn) with the desired
properties, we will do this later.]

Anyway, the operations we consider A : S(Rn) −→ S(Rn) are continuous
linear maps which have transposes At : S(Rn) −→ S(Rn) also continuous
linear maps, such that

(4) 〈Aφ,ψ〉 = 〈φ,Atψ〉, ∀ φ, ψ ∈ S(Rn)

then we just define

(5) A : S ′(Rn) −→ S ′(Rn) by Au(ψ) = u(Atψ).

As the composite u◦At Au is then continuous, so defines a map as indicated.
We have done this for A = ∂j , A

t = −A, A = ×f where f is of slow
growth (e.g. a polynomial) and then At = A. Also A = Ty, translation
by y ∈ Rn and then At = T−y (the inverse of Ty) and most importantly
A = F = At. Convolution with an element of S(Rn) will give another
example.

I said in lecture that there are continuous linear maps A : S(Rn) −→
S(Rn) which do not have ‘formal’ transposes acting on S(Rn.; One such
example is a finite rank operator

(6) Aφ =
∑
j

vj(φ)ψj , vj ∈ S ′(Rn), ψj ∈ S(Rn).

The formal transpose of this (assuming vj /∈ S(Rn) maps S ′(Rn) to S ′(Rn),
as it must, but does not map S(Rn) to S(Rn).
• To prove the density of S(Rn) in L2(Rn) I observed from standard proper-

ties of the Lebesgue integral that C0c (Rn) ⊂ L2(Rn) is dense, so it sufficies
to prove that any continuous function of compact support can be approxi-
mated uniformly by a sequence in

(7) C∞c (Rn) = {φ ∈ S(Rn);∃ R, φ(x) = 0 in |x| > R}.

[Really we wan the sequuence to vanish outside a fixed ball but this could
be arranged afterwards anyway].
• I did this using the convolution integral. If u, v ∈ C0c (Rn) both vanish in
|x| > R then

(8) u ∗ v(x) =

∫
u(x− y)v(y)du =

∫
u(y)v(x− y)dy = v ∗ u(x) ∈ C0c (Rn)

is a well-defined Riemann integral and vanishes when |x| > R.
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The continuity in x follows by direct estimation

(9) |u ∗ v(x+ z)− u ∗ v(x)| = |
∫

(u(x+ z − y)− u(x− y) v(y)|

≤ sup |v| sup
|y|≤R

|v(x+ z − y)− v(x− y)|

and the uniform continuity of v shows the right side tends to zero as |z| → 0.
• If v ∈ C∞c (Rn) and u ∈ C0c (Rn) a similar argument shows that U ∗ v ∈
C∞c (Rn). Namely to prove on derivative exists and is continuous compute
the difference quotient using the second version of the convolution

(10)
u ∗ v(x+ tej)− u ∗ v(x)

t
=

∫
u(y)

u(x+ tej − y)− u(x− y))

t

and using the FTC or intermediate value theorem to show that the inte-
grand on the right converges uniformly to the derivative. So in fact

(11) ∂ju ∗ v = u ∗ (∂jv)

so we can immediately argue by induction that U ∗ v ∈ C∞c (Rn) if v ∈
C∞c (Rn).
• I also proved the density directly by a standard argument using an ‘approx-

imate identity’ (for convolution). Namely if φ ≥ 0, φ(x) = 0 in |x| > 1,
φ ∈ C∞c (Rn) and

∫
φ = 1 (which we can easily arrange with a bump func-

tion) then φk(x) = k−nφ(kx) ∈ C∞c (Rn) and

(12) u ∗ φk → u uniformly if u ∈ C0c (Rn).

The proof is to write the difference ‘cleverly’ using the fact that the nor-
malization is chosen so

∫
φk = 1 for all k :

(13) u ∗ φk(x)− u(x) =

∫
(u(x− y)− u(x))φk(y)dy.

Then the difference can be estimated using the positivity of φ and the fact
that φk(y) vanishes in |y| > 1/k

(14) |u ∗ φk(x)− u(x)| ≤
∫
|u(x− y)− u(x)|φk(y)dy ≤ sup

|y|≤1/k
|u(x− y)− u(x)|

and the uniform continuity of u.
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