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RICHARD MELROSE

Abstract. Notes before and then after lecture.

Read: See Hörmander’s treatise, Chapter 12 (Vol 2) if you want more detail.

Before lecture

• Paley-Wiener again
• Hyperbolic polynomials
• The forward fundamental solution – outline
• Uniqueness for the (tempered) Cauchy problem
• Forward fundamental solution for the wave operator

Additonal notes before lecture

• Paley-Wiener again:

(1) {u ∈ L2(R);u = 0 in x < 0} ' {û : {(ξ + iη) ∈ C; η < 0} −→ C;

holomorphic and sup
0>η>−∞

∫
|û(ξ + iη)|2dξ <∞}.

also

(2) C∞c (R) ' {û : C −→ C entire and for some A,

sup(1 + |ξ|2)N exp(−A|η|)|û(ξ + iη)| <∞ ∀ N.

(3) {u ∈ C∞c (R); supp(u) ⊂ (−∞, 0] ' {û : C −→ C entire and for some A > 0,

sup(1 + |ξ|2)N exp(−A(η)+)|û(ξ + iη)| <∞}.

The proofs of the forward versions of these results are pretty much the
same. For instance if u ∈ C∞c (R) then the Fourier-Laplace transform

(4) û(ξ + iη) =

∫
e−ix(ξ+iη)u(x)dx = F(exηu)

is defined for all ξ + iη ∈ C. The norm of exηu in HN is bounded by
CN exp(A|η)) provided the support of u is contained in a ball of radius
smaller than A and by differentiation under the integral sign is holomorphic,
i.e. entire. This gives the map in (2). The converse follows by first observing
that the inverse Fourier transform of û restricted to the real space defines
an element of H∞(R).
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Hyperbolicity

• Hyperbolic polynomials. The model for these corresponds to the wave
operator

D2
t −∆x = P (Dt, Dx), P (τ, ξ) = τ2 − |ξ|2 on R× Rn = Rn+1.

• We say that a polynomial of degree m in n variables is hyperbolic with
respect to the (co)-direction N ∈ Rn if
(1) The principal part satisfies Pm(N) 6= 0 (P (D) is then said to be non-

characteristic for the hypersurface x ·N = 0 or vice versa).
(2) The roots s of P (ξ + sN) = 0 have imaginary part bounded indepen-

dent of ξ ∈ Rn, | Im s| < s0.
If course we can replace ξ by ξ+(Re s)N and so think of this last condition
as saying that P (ξ + iτN) 6= 0 for |τ | ≥ s0.
• The first condition means that P (ξ+ sN) is a polynomial of degree exactly
m in s for each ξ since the coefficient of sm is Pm(N).
•

Lemma 1. If P is hyperbolic with respect to N then so is Pm.

Proof. Add another scaling variable u > 0 and look at P (u−1ξ+su−1N) =
0. The roots of this as a polynomial must have | Im s| < s0u. The roots of
this polynomial are the same as those of

(5) P (s, ξ, u) = umP (u−1ξ + su−1N) = Pm(N)sm +
∑
j<m

qj(u, ξ)s
j

where the coefficients are polynomials in u and ξ so in particular are con-
tinuous. Since the leading term is constant the zeros are (collectively)
continuous and converge as u ↓ 0 to those of

(6) P (s, xi, 0) = Pm(ξ + sN)

which must therefore have only real zeros s. �

It is not the case that Pm hyperbolic implies P is hyperbolic – this is
discussed in detail in Chapter 12 which is in volume two of Hörmander’s
treatise.
• If ξ = N in (6) then the roots, s, are all equal to −1 so it follows that the

roots are negative for ξ = N ′ near N. In fact the set of ξ = N ′ ∈ Rn for
which the zeros s of Pm(N ′ + sN) = 0 are negative is an open cone which
is also convex, denote it by Γ(P,N) ⊂ Rn \ {0}.
•

Lemma 2. If P is hyperbolic with respect to N then it is hyperbolic with
respect to each N ′ ∈ Γ(P,N).

Proof. Since the roots of Pm(N ′ + sN) are negative, Pm(N ′) 6= 0 and P is
non-characteristic with respect to N ′. We claim that roots σ of

(7) P (ξ + sN + σN ′) = 0, Im s < s0, ξ ∈ Rn =⇒ Imσ > 0.

Hyperbolicity implies that there are no roots with σ real and as a polyno-
mial in s this has constant leading coefficient Pm(N ′) 6= 0 so the number
of roots in Imσ > 0 is constant, independent of ξ and s with Im s < s0.
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We can again scale by u > 0 and conclude that the number of roots with
Imσ > 0 of

(8) Q(ξ, s, u, σ) = umP (ξ + su−1N + σu−1N ′) = 0, ξ ∈ Rn, u > 0, Im s < s0u

is constant. Again the leading term in σ is constant and the polynomial
converges to Pm(sN + σN ′). The roots of this have s/σ < 0 since N ′ ∈
Γ(P,N) and so they all have Imσ > 0 which proves (7).

So now we know that Im s < s0 and Imσ < 0 implies that P (ξ + sN +
σN ′) 6= 0. Thus P (ξ + s(N + tN ′)) 6= 0 if Im s < s0 and t > 0. The same
argument applies with reversal of signs of imaginary parts throughout, and
since N + tN ′ ∈ Γ(P,N) it follows that P is hyperbolic with respect to
N + tN ′, N ′ ∈ Γ(P,N). Using convexity the result follows. �

•

Definition 1. A homogeneous polynomial of degree m, Pm, is said to be
strictly hyperbolic with respect to N if it is non-characteristic and the
roots of Pm(ξ + sN) = 0 are real and distinct if ξ is not a multiple of N.
•

Lemma 3. If P is strictly hyperbolic in the sense that Pm is stricly hyper-
bolic then P is hyperbolic.

Proof. Certainly Pm is hyperbolic since the roots of Pm(ξ+sN) must always
be real, being all −tN if ξ = tN. Suppose ξ ⊥ N and consider the roots of

(9) umP (u−1ξ + su−1N) = P (ξ + sN) + u
∑
j<m

qj(u, ξ)s
j

where the coefficients are smooth in u, ξ. Since the roots at u = 0 are
distinct they are smooth in |u| < ε for |ξ| = 1. It follows that their imaginary
parts are bounded, | Im s| < Cu. Thus for η ∈ Rn, η ⊥ N and |η| > 1/ε
the imaginary parts of the roots of P (η + sN) are uniformly bounded. In
the compact region |η| ≤ 1/ε they are certainly bounded so P is indeed
hyperbolic. �

Maybe for Thursday, 17 November

• The most important example of a constant coefficient hyperbolic operator
is the wave operator on Rn+1 = Rt × Rnx ,

(10) � = D2
t −∆ = −∂2t + ∂2x1

+ · · ·+ ∂2xn
.

For this operator we can find a rather explicit formula for the forward
fundamental solution.
• We start by looking at a holomorphic family of tempered distributions given

by locally integrable functions

(11) G(z) =

{
(t2 − |x|2)z/2, t > |x|
0 otherwise

, Re(z) > 0

with support in the proper cone |t| ≥ |x|. Clearly G(z) is continuous and
polynomially bounded for Re z > 0. For Re(z) > 4 (actually 2) it is twice
continuously differentiable as we can see by computing the first derivatives

(12) ∂tG(z) = tG(z − 2), ∂xi
G(z) = −xiG(z − 2),
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where these equalities hold in t > |x|, and observing that the rights sides
are then C1.
• Differentiating again and collecting terms it follows that for Re z > 4,

(13) �G(z) = −∂t(tG(z − 2))−
∑
i≥1

∂xi(xiG(z − 2)) = (−z(z + n− 1))G(z − 2).

Shifting the variable this can be written

(14) G(z) = − 1

(z + 2)(z + n+ 1)
�G(z + 2), Re z > 2.

We can iterate this functional equation so that for any k ∈ N
(15)

G(z) =
(−1)k

(z + 2) . . . (z + 2k)(z + n+ 1) . . . (z + n+ 2k − 1)
�kG(z + 2k), Re z > 2.

•

Lemma 4. As a tempered distribution, G(z) extends to be meromorphic in
the complex plane. If n > 1 is odd there are simple poles at the even integers
−2, . . . ,−n+ 1 and double poles at the even integers −n− 1,−n− 3, . . . . If
n > 1 is even then there are simple poles at the integers −2p, p ∈ N0 and
−n− 1− 2l, l ∈ N0.

Proof. Since we know that G(z+ 2k) is holomorphic in Re z > −2k the left
side is meromorphic in the same region and by the uniqueness of analytic
continuation the result is independent of k. The two sets of poles overlap if
n is odd but not if n is even.

So it only remains to see that there actually are poles of the claimed
orders at the various points, although we are only interested in one or two of
them. Look at a particular putative pole, or double pole, using the formula
(15) for k very large so that the formula holds near the point in question.
It follows that the residue, or double residue, is given by �pG(l) for some
integers p and l > 0. Since G(l) has support in t ≥ |x| it follows from the
uniqueness theorem above, applied repeatedly – first to �(�p−1G(l)), then
to �(�p−2G(l)) and so on – that G(l) = 0 as a distribution. However, by
inspection this is never the case. �

•

Proposition 1. For n odd a multiple of the residue of G(z) at z = −n+ 1
and for n even the regularized value of G(z) and z = −n+ 1 is the unique
forward fundamental solution of the wave operator.

Proof. For l ∈ N it follows from the definition that G(l) is homogeneous
of degree l. Using the formula (15) again, it follows that the residue at
−n− 1 in case n is even, or the double residue at −n− 1 in case n is odd,
is homogeneous of degree −n− 1. �
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