18.155 LECTURE 20 15 NOVEMBER 2016

RICHARD MELROSE

ABSTRACT. Notes before and then after lecture.

Read: See Hörmander's treatise, Chapter 12 (Vol 2) if you want more detail.

Before lecture

- Paley-Wiener again
- Hyperbolic polynomials
- The forward fundamental solution outline
- Uniqueness for the (tempered) Cauchy problem
- Forward fundamental solution for the wave operator

Additonal notes before lecture

• Paley-Wiener again:

(1)
$$\{u \in L^2(\mathbb{R}); u = 0 \text{ in } x < 0\} \simeq \{\hat{u} : \{(\xi + i\eta) \in \mathbb{C}; \eta < 0\} \longrightarrow \mathbb{C};$$

holomorphic and $\sup_{0 > \eta > -\infty} \int |\hat{u}(\xi + i\eta)|^2 d\xi < \infty\}$

also

(2)
$$\mathcal{C}^{\infty}_{c}(\mathbb{R}) \simeq \{ \hat{u} : \mathbb{C} \longrightarrow \mathbb{C} \text{ entire and for some } A,$$

 $\sup(1+|\xi|^{2})^{N} \exp(-A|\eta|)|\hat{u}(\xi+i\eta)| < \infty \forall N.$

(3) { $u \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$; supp $(u) \subset (-\infty, 0] \simeq \{\hat{u} : \mathbb{C} \longrightarrow \mathbb{C} \text{ entire and for some } A > 0,$ $\sup(1 + |\xi|^{2})^{N} \exp(-A(\eta)_{+})|\hat{u}(\xi + i\eta)| < \infty\}.$

The proofs of the forward versions of these results are pretty much the same. For instance if $u \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$ then the Fourier-Laplace transform

(4)
$$\hat{u}(\xi + i\eta) = \int e^{-ix(\xi + i\eta)} u(x) dx = \mathcal{F}(e^{x\eta}u)$$

is defined for all $\xi + i\eta \in \mathbb{C}$. The norm of $e^{x\eta}u$ in H^N is bounded by $C_N \exp(A|\eta)$ provided the support of u is contained in a ball of radius smaller than A and by differentiation under the integral sign is holomorphic, i.e. entire. This gives the map in (2). The converse follows by first observing that the inverse Fourier transform of \hat{u} restricted to the real space defines an element of $H^{\infty}(\mathbb{R})$.

RICHARD MELROSE

Hyperbolicity

• Hyperbolic polynomials. The model for these corresponds to the wave operator

 $D_t^2 - \Delta_x = P(D_t, D_x), \ P(\tau, \xi) = \tau^2 - |\xi|^2 \text{ on } \mathbb{R} \times \mathbb{R}^n = \mathbb{R}^{n+1}.$

- We say that a polynomial of degree m in n variables is hyperbolic with respect to the (co)-direction $N \in \mathbb{R}^n$ if
 - (1) The principal part satisfies $P_m(N) \neq 0$ (P(D) is then said to be noncharacteristic for the hypersurface $x \cdot N = 0$ or vice versa).
 - (2) The roots s of $P(\xi + sN) = 0$ have imaginary part bounded independent of $\xi \in \mathbb{R}^n$, $|\operatorname{Im} s| < s_0$.

If course we can replace ξ by $\xi + (\operatorname{Re} s)N$ and so think of this last condition as saying that $P(\xi + i\tau N) \neq 0$ for $|\tau| \geq s_0$.

- The first condition means that $P(\xi + sN)$ is a polynomial of degree exactly m in s for each ξ since the coefficient of s^m is $P_m(N)$.
- •

Lemma 1. If P is hyperbolic with respect to N then so is P_m .

Proof. Add another scaling variable u > 0 and look at $P(u^{-1}\xi + su^{-1}N) = 0$. The roots of this as a polynomial must have $|\operatorname{Im} s| < s_0 u$. The roots of this polynomial are the same as those of

(5)
$$P(s,\xi,u) = u^m P(u^{-1}\xi + su^{-1}N) = P_m(N)s^m + \sum_{j < m} q_j(u,\xi)s^j$$

where the coefficients are polynomials in u and ξ so in particular are continuous. Since the leading term is constant the zeros are (collectively) continuous and converge as $u \downarrow 0$ to those of

$$P(s, xi, 0) = P_m(\xi + sN)$$

which must therefore have only real zeros s.

It is not the case that P_m hyperbolic implies P is hyperbolic – this is discussed in detail in Chapter 12 which is in volume two of Hörmander's treatise.

- If $\xi = N$ in (6) then the roots, s, are all equal to -1 so it follows that the roots are negative for $\xi = N'$ near N. In fact the set of $\xi = N' \in \mathbb{R}^n$ for which the zeros s of $P_m(N' + sN) = 0$ are negative is an open cone which is also convex, denote it by $\Gamma(P, N) \subset \mathbb{R}^n \setminus \{0\}$.
- •

(6)

Lemma 2. If P is hyperbolic with respect to N then it is hyperbolic with respect to each $N' \in \Gamma(P, N)$.

Proof. Since the roots of $P_m(N' + sN)$ are negative, $P_m(N') \neq 0$ and P is non-characteristic with respect to N'. We claim that roots σ of

(7)
$$P(\xi + sN + \sigma N') = 0, \text{ Im } s < s_0, \ \xi \in \mathbb{R}^n \Longrightarrow \text{ Im } \sigma > 0.$$

Hyperbolicity implies that there are no roots with σ real and as a polynomial in s this has constant leading coefficient $P_m(N') \neq 0$ so the number of roots in Im $\sigma > 0$ is constant, independent of ξ and s with Im $s < s_0$.

 $\mathbf{2}$

L20-PRE

We can again scale by u>0 and conclude that the number of roots with ${\rm Im}\,\sigma>0$ of

(8)
$$Q(\xi, s, u, \sigma) = u^m P(\xi + su^{-1}N + \sigma u^{-1}N') = 0, \ \xi \in \mathbb{R}^n, \ u > 0, \ \operatorname{Im} s < s_0 u$$

is constant. Again the leading term in σ is constant and the polynomial converges to $P_m(sN + \sigma N')$. The roots of this have $s/\sigma < 0$ since $N' \in \Gamma(P, N)$ and so they all have $\operatorname{Im} \sigma > 0$ which proves (7).

So now we know that $\operatorname{Im} s < s_0$ and $\operatorname{Im} \sigma < 0$ implies that $P(\xi + sN + \sigma N') \neq 0$. Thus $P(\xi + s(N + tN')) \neq 0$ if $\operatorname{Im} s < s_0$ and t > 0. The same argument applies with reversal of signs of imaginary parts throughout, and since $N + tN' \in \Gamma(P, N)$ it follows that P is hyperbolic with respect to $N + tN', N' \in \Gamma(P, N)$. Using convexity the result follows.

•

(10)

Definition 1. A homogeneous polynomial of degree m, P_m , is said to be strictly hyperbolic with respect to N if it is non-characteristic and the roots of $P_m(\xi + sN) = 0$ are real and distinct if ξ is not a multiple of N.

Lemma 3. If P is strictly hyperbolic in the sense that P_m is strictly hyperbolic then P is hyperbolic.

Proof. Certainly P_m is hyperbolic since the roots of $P_m(\xi+sN)$ must always be real, being all -tN if $\xi = tN$. Suppose $\xi \perp N$ and consider the roots of

(9)
$$u^m P(u^{-1}\xi + su^{-1}N) = P(\xi + sN) + u \sum_{j < m} q_j(u,\xi) s^j$$

where the coefficients are smooth in u, ξ . Since the roots at u = 0 are distinct they are smooth in $|u| < \epsilon$ for $|\xi| = 1$. It follows that their imaginary parts are bounded, $|\operatorname{Im} s| < Cu$. Thus for $\eta \in \mathbb{R}^n$, $\eta \perp N$ and $|\eta| > 1/\epsilon$ the imaginary parts of the roots of $P(\eta + sN)$ are uniformly bounded. In the compact region $|\eta| \leq 1/\epsilon$ they are certainly bounded so P is indeed hyperbolic.

MAYBE FOR THURSDAY, 17 NOVEMBER

• The most important example of a constant coefficient hyperbolic operator is the wave operator on $\mathbb{R}^{n+1} = \mathbb{R}_t \times \mathbb{R}_x^n$,

$$\Box = D_t^2 - \Delta = -\partial_t^2 + \partial_{x_1}^2 + \dots + \partial_{x_n}^2.$$

For this operator we can find a rather explicit formula for the forward fundamental solution.

• We start by looking at a holomorphic family of tempered distributions given by locally integrable functions

(11)
$$G(z) = \begin{cases} (t^2 - |x|^2)^{z/2}, & t > |x| \\ 0 & \text{otherwise} \end{cases}, \ \operatorname{Re}(z) > 0$$

with support in the proper cone $|t| \ge |x|$. Clearly G(z) is continuous and polynomially bounded for $\operatorname{Re} z > 0$. For $\operatorname{Re}(z) > 4$ (actually 2) it is twice continuously differentiable as we can see by computing the first derivatives

(12)
$$\partial_t G(z) = tG(z-2), \ \partial_{x_i} G(z) = -x_i G(z-2),$$

RICHARD MELROSE

where these equalities hold in t > |x|, and observing that the rights sides are then C^1 .

• Differentiating again and collecting terms it follows that for $\operatorname{Re} z > 4$,

(13)
$$\Box G(z) = -\partial_t (tG(z-2)) - \sum_{i \ge 1} \partial_{x_i} (x_i G(z-2)) = (-z(z+n-1))G(z-2).$$

Shifting the variable this can be written

(14)
$$G(z) = -\frac{1}{(z+2)(z+n+1)} \Box G(z+2), \text{ Re } z > 2.$$

We can iterate this functional equation so that for any $k \in \mathbb{N}$

$$G(z) = \frac{(-1)^k}{(z+2)\dots(z+2k)(z+n+1)\dots(z+n+2k-1)} \Box^k G(z+2k), \text{ Re } z > 2.$$

Lemma 4. As a tempered distribution, G(z) extends to be meromorphic in the complex plane. If n > 1 is odd there are simple poles at the even integers $-2, \ldots, -n+1$ and double poles at the even integers $-n-1, -n-3, \ldots$. If n > 1 is even then there are simple poles at the integers -2p, $p \in \mathbb{N}_0$ and -n-1-2l, $l \in \mathbb{N}_0$.

Proof. Since we know that G(z+2k) is holomorphic in $\operatorname{Re} z > -2k$ the left side is meromorphic in the same region and by the uniqueness of analytic continuation the result is independent of k. The two sets of poles overlap if n is odd but not if n is even.

So it only remains to see that there actually are poles of the claimed orders at the various points, although we are only interested in one or two of them. Look at a particular putative pole, or double pole, using the formula (15) for k very large so that the formula holds near the point in question. It follows that the residue, or double residue, is given by $\Box^p G(l)$ for some integers p and l > 0. Since G(l) has support in $t \ge |x|$ it follows from the uniqueness theorem above, applied repeatedly – first to $\Box(\Box^{p-1}G(l))$, then to $\Box(\Box^{p-2}G(l))$ and so on – that G(l) = 0 as a distribution. However, by inspection this is never the case.

•

Proposition 1. For n odd a multiple of the residue of G(z) at z = -n+1 and for n even the regularized value of G(z) and z = -n+1 is the unique forward fundamental solution of the wave operator.

Proof. For $l \in \mathbb{N}$ it follows from the definition that G(l) is homogeneous of degree l. Using the formula (15) again, it follows that the residue at -n-1 in case n is even, or the double residue at -n-1 in case n is odd, is homogeneous of degree -n-1.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY *E-mail address*: rbm@math.mit.edu

4

(15)