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ABSTRACT. Notes before and then after lecture.

Read: See Hormander’s treatise, Chapter 12 (Vol 2) if you want more detail.

BEFORE LECTURE

e Paley-Wiener again

e Hyperbolic polynomials

e The forward fundamental solution — outline

e Uniqueness for the (tempered) Cauchy problem

e Forward fundamental solution for the wave operator

ADDITONAL NOTES BEFORE LECTURE
e Paley-Wiener again:
{ue L*(R);u=01in 2 < 0} ~ {a: {(£ +in) € C;n < 0} — C;

holomorphic and  sup / [a(& 4 in) |2 dE < oo}

0>n>—oc0
also

C(R) ~ {4 : C — C entire and for some A,

sup(1 + [£]*)"™ exp(—Aln|)|a(€ + i) < co V N.

{v € C(R);supp(u) C (—o0,0] ~ {i& : C — C entire and for some A > 0,
sup(L + [€]*)" exp(—A(n)4)]a(€ +in)| < oo}

The proofs of the forward versions of these results are pretty much the

same. For instance if v € C2°(R) then the Fourier-Laplace transform

(€ +in) = /efix(&i")u(x)dx = F(e"u)

is defined for all £ + in € C. The norm of e*"u in HY is bounded by
Cn exp(A|n)) provided the support of u is contained in a ball of radius
smaller than A and by differentiation under the integral sign is holomorphic,
i.e. entire. This gives the map in (2). The converse follows by first observing
that the inverse Fourier transform of 4 restricted to the real space defines
an element of H*(R).
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HYPERBOLICITY

Hyperbolic polynomials. The model for these corresponds to the wave
operator

D? - A, = P(Dy,D,), P(r,6) =72 — |¢|> on R x R" = R""1,

We say that a polynomial of degree m in n variables is hyperbolic with

respect to the (co)-direction N € R™ if

(1) The principal part satisfies P,,,(IN) # 0 (P (D) is then said to be non-
characteristic for the hypersurface - N = 0 or vice versa).

(2) The roots s of P(¢ + sN) = 0 have imaginary part bounded indepen-
dent of £ € R, |Im s| < sg.

If course we can replace € by £ + (Re s) N and so think of this last condition

as saying that P(§ +i7N) # 0 for || > s0.

The first condition means that P({ 4+ sN) is a polynomial of degree exactly

m in s for each & since the coefficient of s™ is P,,(N).

Lemma 1. If P is hyperbolic with respect to N then so is Py,.

Proof. Add another scaling variable u > 0 and look at P(u~*¢+su"tN) =
0. The roots of this as a polynomial must have |Im s| < sou. The roots of
this polynomial are the same as those of

P(s,&,u) =umP(u'¢ + su"'N) = P, (N)s™ + Z qj(u,&)s’
j<m
where the coefficients are polynomials in v and £ so in particular are con-
tinuous. Since the leading term is constant the zeros are (collectively)
continuous and converge as v | 0 to those of

P(s,xi,0) = Py (£ + sN)
which must therefore have only real zeros s. O

It is not the case that P,, hyperbolic implies P is hyperbolic — this is

discussed in detail in Chapter 12 which is in volume two of Hérmander’s
treatise.
If £ = N in (6) then the roots, s, are all equal to —1 so it follows that the
roots are negative for £ = N’ near N. In fact the set of £ = N’ € R™ for
which the zeros s of P,,,(N' + sN) = 0 are negative is an open cone which
is also convex, denote it by I'(P, N) C R™\ {0}.

Lemma 2. If P is hyperbolic with respect to N then it is hyperbolic with
respect to each N' € T'(P, N).

Proof. Since the roots of P,,,(N' 4+ sN) are negative, P,,,(N’) # 0 and P is
non-characteristic with respect to N’. We claim that roots o of

P+ sN+oN')=0, Ims < sg, £ € R" = Imo > 0.

Hyperbolicity implies that there are no roots with ¢ real and as a polyno-
mial in s this has constant leading coefficient P,,(N') # 0 so the number
of roots in Imo > 0 is constant, independent of £ and s with Ims < sg.
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We can again scale by u > 0 and conclude that the number of roots with
Imo > 0 of

(8) Q(&,8,u,0) =umP(¢+su™*N+ou'N')=0, £ €R", u>0, Ims < sou

(12)

is constant. Again the leading term in o is constant and the polynomial
converges to P, (sN + oN'). The roots of this have s/o < 0 since N’ €
I'(P,N) and so they all have Im ¢ > 0 which proves (7).

So now we know that Im s < sp and Im o < 0 implies that P(§ + sN +
oN') # 0. Thus P(§ + s(N +tN’)) #0if Ims < sg and ¢t > 0. The same
argument applies with reversal of signs of imaginary parts throughout, and
since N +tN’ € T'(P,N) it follows that P is hyperbolic with respect to
N +tN', N' e T'(P,N). Using convexity the result follows. O

Definition 1. A homogeneous polynomial of degree m, P,,, is said to be
strictly hyperbolic with respect to N if it is non-characteristic and the
roots of P, (£ + sN) = 0 are real and distinct if £ is not a multiple of N.

Lemma 3. If P is strictly hyperbolic in the sense that P, is stricly hyper-
bolic then P is hyperbolic.

Proof. Certainly P,, is hyperbolic since the roots of P,,,(§+sN) must always
be real, being all —tN if £ = ¢tN. Suppose ¢ L N and consider the roots of

u™P(u ¢+ su'N) = P(€ +sN) +u Z qj(u,&)s’
j<m
where the coefficients are smooth in u, £. Since the roots at u = 0 are
distinct they are smooth in |u| < € for |{] = 1. It follows that their imaginary
parts are bounded, |Ims| < Cu. Thus for n € R", n L N and |n| > 1/¢
the imaginary parts of the roots of P(n+ sN) are uniformly bounded. In
the compact region |n| < 1/e they are certainly bounded so P is indeed
hyperbolic. (Il

MAYBE FOR THURSDAY, 17 NOVEMBER

The most important example of a constant coefficient hyperbolic operator
is the wave operator on R"*! = R, x R?,

O=D;-A=-9;+92 +--+02 .

For this operator we can find a rather explicit formula for the forward
fundamental solution.

We start by looking at a holomorphic family of tempered distributions given
by locally integrable functions

2 1212)3/2. ¢ >
O IR S B Y B
0 otherwise

with support in the proper cone |t| > |z|. Clearly G(%) is continuous and
polynomially bounded for Rez > 0. For Re(z) > 4 (actually 2) it is twice
continuously differentiable as we can see by computing the first derivatives

0G(z) =tG(z — 2), 0,,G(z) = —x;G(z — 2),
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where these equalities hold in ¢ > |z|, and observing that the rights sides
are then C'.
Differentiating again and collecting terms it follows that for Rez > 4,

(13) OG(2) = —0:(tG(z —2)) — Z@T7 (2;G(z—2)) =(—2(24+n—-1)G(z —2).

(14)

(15)
G(z) =

i>1
Shifting the variable this can be written
1
G(z)=— oG 2), R 2.
(2) TG nT D) (z4+2), Rez >

We can iterate this functional equation so that for any k € N

(=D*
(Z+2)---(Z+2k)(z+n+1)...(z+n+2k_1)DkG(Z+2k>y Rez > 2.

Lemma 4. As a tempered distribution, G(z) extends to be meromorphic in
the complex plane. If n > 1 is odd there are simple poles at the even integers
—2,...,—n+1 and double poles at the even integers —n—1,—n—3,.... If
n > 1 is even then there are simple poles at the integers —2p, p € Ny and
7ﬂ7172l,l€N0.

Proof. Since we know that G(z + 2k) is holomorphic in Re z > —2k the left
side is meromorphic in the same region and by the uniqueness of analytic
continuation the result is independent of k. The two sets of poles overlap if
n is odd but not if n is even.

So it only remains to see that there actually are poles of the claimed
orders at the various points, although we are only interested in one or two of
them. Look at a particular putative pole, or double pole, using the formula
(15) for k very large so that the formula holds near the point in question.
It follows that the residue, or double residue, is given by (PG(I) for some
integers p and | > 0. Since G(I) has support in ¢ > |z| it follows from the
uniqueness theorem above, applied repeatedly — first to J((0P~1G(1)), then
to O(OP~2G(1)) and so on — that G(I) = 0 as a distribution. However, by
inspection this is never the case. (I

Proposition 1. For n odd a multiple of the residue of G(z) at z=—n—+1
and for n even the regularized value of G(z) and z = —n + 1 is the unique
forward fundamental solution of the wave operator.

Proof. For | € N it follows from the definition that G(I) is homogeneous
of degree . Using the formula (15) again, it follows that the residue at
—n — 1 in case n is even, or the double residue at —n — 1 in case n is odd,
is homogeneous of degree —n — 1. ([
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