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Abstract. Notes before and then after lecture.

Read:

Before lecture

• Spectral projection. Using the functional calculus from last time we can de-
fine what is supposed to be the part of the space corresponding to spectrum
in (−∞, t] for t ∈ R and a given A = A∗ ∈ B(H). Namely

(1) Ht =
⋂
{Ran(χ(A))⊥;χ ∈ Ccomp(t,∞)}.

Thus Ht is the intersection of closed subspaces so is itself closed and we
can let Et be the orthogonal projection onto Ht.
• AE(t) = E(t)A since A : Ht −→ Ht.
• The Ht get ‘larger’ as t increases since the intersection in (1) shrinks with

increasing t, thus

(2) Et′Et = EtEt′ = Et if t′ ≥ t.

• From (2) it follows that δE = Et′ − Es is a projection (possibily zero) if
t′ ≥ s, and that

(3) χ(A)δE = δE if χ(t) = 1 on [t′, s]

where χ is continuous of course. This in turn means that

(4) ‖(Aj − sj)δE‖ ≤ |(t′)j − sj |

since (Aj−sj)δ(E) = (Aj−sj)χ(A)δE with χ as in (3) and (Aj−sj)χ(A) =
χ′(A), χ′(t) = (tj − sj)χ(t).
• It follows that for any u ∈ H, 〈Etu, u〉 = ‖Etu‖2 is an increasing function of
t. If you worked through ‘baby Rudin’ you would know about the Riemann-
Stieltjes integral and see that for any continuous function f the right side
of

(5) 〈f(A)u, u〉 =

∫
f(t)d〈Etu, u〉

is defined. To prove the identity it is enough to check it for polynomi-
als using the definition of the functional calculus on the left and Stone-
Weierstrass. The linearity of the integral means that one is reduced to the
case f = zj whic is to say that

〈Aju, u〉 =

∫
tjd〈Etu, u〉.
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The right side is the limit of a sequence of Riemann sums under sufficiently
fine subdivison and these are

(6)
∑
j

tjjδjE, δjE = E(tj+1)− E(tj).

• This determines f(A) as a bounded operator and with a bit more work one
can think of dPλ itself as a measure ‘with values in the projections’ and
write (??) in the form

f(A) =

∫
fdPλ.

• Polar decomposition. I think I mentioned this before. First define a ‘partial
isometry’ to be a bounded operator V on H such that V ∗V and V V ∗ are
both orthogonal projections. It follows that V maps null(V )⊥ isometrically
onto Ran(V ) which are both closed subspaces – hence the name.
• Any bounded operator B can be written B = AV where A is non-negative

and self-adjoint and V is a partial isometry. Define C = (B∗B)
1
2 using the

functional calculus. Then set

(7) Wh = W (Cu) = Bu ∀ h = Cu ∈ Ran(C), Wh = 0 if h ∈ Ran(C)⊥.

Note that if h ∈ Ran(C) then h = Cu where u is well-defined up to addition
of u′ ∈ Nul(C) but Cu′ = 0 implies C2u′ = B∗Bu′ = 0 which implies
Bu′ = 0. Thus B(u + u′) = Bu and W is well-defined on the range of
C. Moreover, ‖Wh‖2 = (Bu,B∗u) = ‖Cu‖2 so V is norm-preserving on
Ran(C). It follows that W extends continuously to the closure of Ran(C)
to a partial isometry. Thus B = WC. The decomposition of B = AV
follows from the decomposition for B∗ so A = (BB∗)

1
2 .

• If A is compact then so is APλ for each λ and if λ < 0 then APλ is invertible
on H−λ which must therefore be finite-dimensional. It follows that for λ < 0

H−λ is the direct sum of one-dimensional eigenspaces for A. (Assuming you
know the finite-dimensional theorem). The same is true for A(Id−Pλ) when
λ > 0 and (Id−Pε)(Id−P−ε)A has spectrum contained in [−ε, ε] so tends
to zero in norm as ε ↓ 0. From this it follows that any compact self-adjoint
operator on a separable Hilbert space has a complete orthonormal basis
of eigenfunctions (possibily including an infinite dimensional space of null
vectors).
• One nice application of the polar decomposition is to see that there is a

retraction:

Proposition 1. There is a norm-continuous map

(8) I : GL(H)× [0, 1] −→ GL(H), I(0) = Id, I(1) : GL(H(=) −→ U(H).

Proof. The polar decomposition of an invertible operator is

A = (AA∗)
1
2UA

where both factors are continuous in norm. This is not obvious from the
spectral theorem itself but can be proved using the holomorphic functional
calculus.

So the deformation can be defined by

(9) I(A, t) = ((1− t)(AA∗) 1
2 + t Id)UA.
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• The spectral theorem can also be used to show from this that U(H) is
connected. Namely that any U ∈ U(H) is the endpoint of a (continuous)
path starting at the identity. Using the retraction above it is enough to
find a path in GL(H).

Now, as for any operator, U = A+ iB with A and B self-adjoint but in
this case U∗ = U−1 commute with U so

[A− iB,A+ iB] = 2i[A.B] = 0, U∗U = A2 +B2 = Id .

Now, for a unitary operator,

(10) Spec(U) ⊂ S = {z ∈ C; |z| = 1}.

Since ‖U‖ = 1 we know that the spectrum is in the closed unit disk. Cer-
tainly z /∈ Spec(U) since U is invertible. More generally if z 6= 0 then

(U − z) = −zU(z−1 − U−1)

shows from the same argument that there is no point in the spectrum with
|z| < 1.

Now, if a ∈ [−1, 1] but a /∈ Spec(A) then a + it /∈ Spec(U) for any t,

although the only possibilities are t = ±(1− a2)
1
2 . This follows by writing

U − (a+ it) = i(A− a)((A− a)−1(B − t))− i Id)

Since A and B commute (A−a)−1(B−t)) is self-adjoint and so both factors
are invertible.

Using this observation we can use the spectral projection of A at 0, Π0,
to write A = A− + A+ where A− = Π0A ≤ 0 and A+ = (Id−Π0) ≥
0. From the functional calculus it follows that any operator, such as B
which commutes with A commutes with any function of A. Looking at the
definition of the spaces H±0 above it follows that B acts on them, maps
each into itself. So in fact B commutes with Π0 and hence with A±. The
two operators

(11) U− = A− + iBΠ0, U+ = A+ + iB(Id−Π0), U = U− + U+

are unitary operators on the range of Π0 and its orthocomplement respec-
tively. Moreover, 1 /∈ Spec(U−) and −1 /∈ Spec(U+). We can rotate U−
using the family eisU− for s ∈ [0, π] which rotates the spectrum.

At this point we have shown that U can be connected by a path to a
unitary operator which does not have −1 in its spectrum

U = A+ iB, −1 /∈ Spec(A).

So look at the path

Bt = ((1− t)S + t Id) + i((1− t)B, B∗tBt = (((1− t)S + t Id))2 + tB2.

This is invertible, hence so is Bt and connects U to the identity in GL(H)
and so after applying the retraction, in U(H).
• Other ideals in the separable case – Hilbert-Schmidt and trace class.
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• The Hilbert-Schmidt operators are those which satisfy

(12) HS = {A;
∑
i

‖Aei‖2 <∞}

for one, and hence any orthonormal basis. Here we use the Fourier-Bessel
expansion for any element u =

∑
i

(u, ei)ei, and ‖u‖2 =
∑
i

|(u, ei)|2 in terms

of an orthonormal basis. Using this in (12),

(13)
∑
i

‖Aei‖2 =
∑
i,j

|(Aei, fj)|2 =
∑
j

‖A∗fj‖2

for any two orthonormal bases. Applying this twice shows that the norm

(14) ‖A‖2HS =
∑
i

‖Aei‖2

is independent of the orthonormal basis used to define it. In fact HS(H) is
a Hilbert space with inner product

(A,B) =
∑
i

(Aei, B
∗ei).

The Hilbert-Schmidt norm satisfies

(15) ‖A∗‖HS = ‖A‖HS, ‖B1AB2‖HS ≤ ‖B1‖‖A‖HS‖B2‖

for any bounded operators Bi.

• An operator T is of trace class if it is of the form
N∑
i=1

AiBi with Ai and Bi

Hilbert-Schmidt. It follows that for any two orthonormal bases

(16)
∑
j

|(Tej , fj)| ≤
N∑
i=1

∑
i

|(Biej , A∗i fj)| ≤
∑
i

‖Ai‖HS‖Bi‖HS.

We define the trace norm to be

(17) ‖T‖TC = sup
∑
j

|(Tej , fj)|

with the supremum taken over pairs of orthonormal bases. Directly from
the definition, if T is trace class then so is T ∗ and ATB if A and B are
bounded and

(18) ‖T ∗‖TC = ‖T‖TC, ‖ATB‖TC ≤ ‖A‖‖T‖TC‖B‖.

• Conversely, if T ∈ B(H) is such that the trace norm is finite, then consider
its polar decomposition T = AV. Take fj to be an orthonormal basis of
eigenfunctions for A where the j ∈ I ⊂ N correspond to non-zero eigenval-
ues. Then

(19) (Tej , fj) = (V ej , Afj) = λj(V ej , fj)

In the polar decomposition, V is an isometry onto Nul(A)⊥ so we can choose
the orthonormal basis ej so that V ej = fj for j ∈ I. It follows that∑

j

(Tej , fj) =
∑
j∈I

λj ≤ ‖T‖TC.
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So in fact λ
1
2
j is a sequence in l2 from which it follows that A

1
2 ∈ HS

and hence T = (V A
1
2 )A

1
2 is the product of two Hilbert-Schmidt operators.

Then

(20) ‖T‖TC =
∑
j

σ
1
2
j

with σj the eigenvalues (repeated with multiplicity) of TT ∗.
• It follows easily that the trace class operators from a Banach space in which

the finite rank operators are dense.
• For a trace class operator the trace

(21) Tr(T ) =
∑
i

(Tei, ei)

is a continuous linear functional with respect to the trace norm since

|Tr(T )| ≤
∑
i

|(Tei, ei)| ≤ ‖T‖Tr.

It is in fact independent of the choice of orthonormal basis but initially we
can define Tr(T ) with respect to some fixed choice of basis.
• If T is trace class and B is bounded then

Tr([T,B]) = 0.

If ΠN is the projection onto the span of the first N elements of the or-
thonormal basis then ΠNTΠN → T in trace norm. So it suffices to prove
() with T replace by ΠNTΠN that is to compute

Tr([ΠNTΠN , B]) =
∑
i

((PNTPNBei, ei)− (BΠNTΠNei, ei)) .

Both summands vanish if i > N (since PNei = 0 if N > i) so this reduces
to ∑

i≤N

((PNTPNPNBPNei, ei)− (PNBPNΠNTΠNei, ei))

which is the same computation for N ×N matrices PNBPN and ΠNTΠN .
Writing the matrices operators as matrices

ΠNTΠNei =
∑
j≤N

Tijej , ΠNBΠNei =
∑
j≤N

Bijej

the sum in () becomes∑
i≤N

(TijBji −BijTji) = 0,

which proves ().
• Hence Tr(T ) = Tr(UTU−1) for any unitary (or invertible) U. Since any

orthonormal bases fj and ej are related by a unitary operator, Ufj = ej it
follows that the formula (21) defining the trace functional is independent
of the orthonormal basis used to define it.
• We define the Fredholm operators Fr ⊂ B(H) to consist of those operators
F such that
(1) The null space Nul(F ) is finite-dimensional.
(2) The range Ran(F ) is closed.
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(3) The orthocomplement of the range Ran(F )⊥ = Nul(F ∗) is finite di-
mensional.

• If K ∈ K(H) then Id−K is Fredholm. If K is compact and self-adjoint this
follows from the spectral theorem, since the spectrum of Id−K is discrete
near 0 consisting of a finite dimensional null space and Id−K is invertible on
its orthocomplement. On the unit ball in the null space of Id−K, u = Ku
so it is compact and hence the null space is finite dimensional. Consider
(Id−K)(Id−K∗) = Id−K −K∗ +KK∗; so this is an isomorphism of the
orthocomplement of its finite-dimensional null space to its. For the null
space satisfies

(Id−K)(Id−K∗)u = 0 =⇒ ((Id−K)(Id−K∗)u, u) = 0 =⇒ (Id−K∗)u = 0.

Thus (Id−K)(Id−K∗) is an isomorphism on the closed space Nul(Id−K∗)⊥
to itself, and hence this is the range of Id−K.
• An operator is Fredholm if and only if it has a generalized inverse G ∈ B(H)

satisfying

(22) GF = Id−P1, FG = Id−P2

where the Pi are finite rank projections onto Nul(F ) and Nul(F ∗) respec-
tively. Indeed from F we can construct a reduced operator

F̃ : Nul(F )⊥ −→ Ran(F )

which is a bijection, and so by the open mapping theorem has a bounded
inverse

G̃ : Ran(F ) −→ Nul(F )⊥.

We define G by extending this as zero to Nul(F ) and then (22) follows.
• An operator is Fredholm if and only if it has a parameterix modulo compact

operators, so F ∈ B(H) is Fredholm iff there exists Q ∈ B(H) such that

(23) QF = Id−K1, FQ = Id−K2, Ki ∈ K.
This is equivalent to the existence of a parameterix modulo trace class
operators and to the existence of a parametrix moduli finite rank operators.

Clearly the generalized inverse of a Fredholm operator is a parametrix
in the sense of (23). Conversely if Q is such an operator then

Ran(F ) ⊃ Ran(FQ) = Ran(Id−K2), Nul(F ) ⊂ Nul(FQ) = Nul(Id−K1).

From the discussion above of Id−K, the null space is contained in a finite
dimensional space, so is finite dimensional. The range contains a closed
subspace of finite codimension so it follows that it is the sum of a closed
and of finite dimensional space so it too is closed of finite codimension.
• The Fredholm operators form an open set and if P is Fredholm and K is

compact then P −K is Fredholm.
If Q is a parametrix for F ∈ Fr(H) and B ∈ B(H) has ‖B‖ < 1/‖Q‖

then ‖QB‖ < 1 and
(24)
Q(F+B) = QF+QB = (Id +QB)−K1 =⇒ QR(F+B) = Id−K ′1, K ′1 = (Id +QB)−1K1, QR = (Id +QB)−1Q.

Similarly,
(25)
(F+B)Q = FQ+BQ = (Id +BQ)−K2 =⇒ (F+B)QR = Id−K ′2, K ′2 = K2(Id +BQ)−1, QL = Q(Id +BQ)−1.
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These are respectively a ‘left’ and a ‘right’ parametrix modulo compact op-
erators, but it follows that either is a parametrix since using these identities

QL = QL(Id−K ′2) +QLK
′
2 = QLFQR +QLK

′
2 = QR −K ′1QR +QLK

′
2,

so the difference is K ′1QR −QLK ′2 itself compact.
• The index

(26) ind(P ) = dim Nul(P )− dim Nul(P ∗)

is locally constant on the Fredholm operators.
• One nice way to prove this is to use Calderón’s formula. Namely if Q is a

parameterix for P modulo trace class operators then

(27) ind(P ) = Tr([P,Q]).

Note the ‘irony’ here that if P or Q were trace class (which they cannot be
except in the finite-dimensional case) then the trace would vanish. Really
this is an ‘anomaly’ or ‘trace-defect’ formula.

To prove (27) observe that it is true if Q is the generalized inverse of P
as in (22). Then

(28)
[P,Q] = PQ−QP = (Id−R2)−(Id−R1) = R1−R2 =⇒ Tr([P,Q]) = TrP1−TrP2 = ind(P ).

In general if Q and Q′ are both parameterices modulo trace class errors
then so is Qt = (1− t)Q+ tQ′ for t ∈ [0, 1] since

QtP = (1− t)(Id−R1) + t(Id−R′1) = Id− ((1− t)R1 + tR′1)

PQt = (1− t)(Id−R2) + t(Id−R′2) = Id− ((1− t)R2 + tR′1)

in terms of the ‘error’ terms for Q and Q′. Thus in fact [P,Qt] = [P,Q] +
t[P,Q−Q′]. The argument in () above shows that Q−Q′ is trace class so
Tr([P,Q−Q′]) = 0 and

Tr([P,Qt]) = Tr([P,Q]) + tTr([P,Q−Q′]) is constant.

So Calderón’s formula (27) holds for any parametrix modulo trace class
errors.

• Calderón’s formula also easily shows that

Lemma 1. The product of two Fredholm operators is Fredholm with index
the sum of the indexes.

Proof. If F and F ′ are the Fredholm operators with generalized inverses G
and G′ then G′G is a parameterix for FF ′ modulo trace class operators:

(29)
G′GFF ′ = G′(Id−P1)F ′ = Id−P ′1 −G′P1F

′,

FF ′G′G = F (Id−P ′2)G = Id−P2 − FP ′2G

where the errors are indeed trace class. Thus FF ′ is Fredholm and using
Calderón’s formula

ind(FF ′) = Tr(P ′1 +G′P1F
′ − P2 − FP2G)

= Tr(P ′1 + P1F
′G′ − P2 − P2GF ) = Tr(P ′1 + P1(Id−P2)− P2 − P2(Id−P1))

= Tr(P ′1 + P1 − P2 − P ′2) = ind(F ) + ind(F ′)

where the trace identity has been used several times. �
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•

Proposition 2. The index is constant on components of Fr and labels these
components, i.e. if two Fredholm operators have the same index then they
can be connected by a path in Fr .

The constancy of the index reduces to its local constancy. So consider the
proof above that the Fredholm operators are open in the bounded opeators.
If we consider F + tB where F is Fredholm and has generalized inverse G
it follows from the discussion above that Qt = (Id +tGB)−1G is a continu-
ous family of parameterices modulo a continuous family of errors, meaning
continuous in trace class. Indeed

Qt(F + tB) = Id−(Id +tGB)−1P1,

(F + tB)Qt = Id−P2(Id +tBG)−1 + (F + tB)[(Id +tGB)−1G−G(Id +tBG)−1].

From Calderón’s formula it follows that the index is continuous, but since
it is valued in the integers it is locally constant.

Suppose F has index zero. Then it follows that its generalized inverse
is an invertible map from Nul(F )⊥ to Nul(F ∗)⊥ where the two finite-
dimensional spaces have the same dimension. So if we can find a finite
rank operator B which maps Nul(F ) to Nul(F ∗) and as such is invert-
ible. Then F + tB is invertible for t 6= 0. Thus the Fredholm operators or
index zero may be path connected to elements of GL(H). This is shown
somewhere else to be connected.

If F and F ′ are both Fredholm with index k 6= 0 and G is the generalized
inverse of F then G is Fredholm of index −k and GF ′ is Fredholm of index
0. Thus, assuming the case of index 0, GF ′ can be connected to the identity
through Fredholm operators of index 0 by a continuous path Bt, B0 = GF ′,
B1 = Id . Now FBt is a path from FGF ′ to F in the Fredholms of index
k and FGF ′ = F ′ − P2F

′ can be connected to F ′ by the path F ′ − sP2F
′

since P2F
′ has finite rank.

After lecture

I added the discussion on polar decomposition, and expanded the parts on
Hilbert-Schmidt, trace class operators and Fredholm operators.

You might also like to check the proof that two-sided ideal containing an non-
compact operator much be the whole of B(H). Let A be a non-compact operator
in the ideal, then so is A∗A. It is certainly in the ideal and if it were compact then
restricted to the orthonomal complement W of a sufficiently large finite dimensional
space (spanned by eigenvalues) it has small norm

(πWA
∗AπWu, u) ≤ ε2 =⇒ ‖AπW ‖ < ε,

But this shows that A = AΠW + A(Id−ΠW ) can be norm approximated by finite
rank operators.

Since A∗A is not compact it must be the case that the spectral projection P
for [ε2, ‖A‖2] has infinite rank for some ε > 0 – this is the same argument. But
then PA∗AP is invertible on the range of A. Composing with the inverse it follows
that P itself is in the ideal. The orthocomplement of P is either finite or infinite
dimensional. In any case there is a partial isometry from a subspace of Ran(P ) to
Ran(P )⊥ and this is of the form BP so is in the ideal. But then BPPB∗ is also in
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the ideal and this is the projection onto Ran(P )⊥. Adding these the identity is in
the ideal.

You might also like to observe that all these spaces R, K, HS, TC and Fr have
the property that the are mapped into themselves by composition with an element
of GL(H) on either side. This means that if H1 and H2 are two separable Hilbert
spaces then we have perfectly reasonable definitionts of

(30) R(H1, H2), K(H1, H2), HS(H1, H2), TC(H1, H2), Fr(H1, H2) ⊂ B(H1, H2).

Namely chose an isomorphism between H1 and H2 and use composition with this to
identify each of the spaces with the corresponding one on H2. The result does not
depend on the choice and the first four are two-sided modules – are closed under
composition on the right or left with bounded operators on the appropriate space.
The Fredholm operators are closed under composition with Fredholm operators on
left or right. The index of a Fredholm operator makes sense in the case but there
is no trace functional.

0.1. Semi-Fredholm opeators. I also said but did not prove that the semi-
Fredholm operators are dense in all bounded operators. An operator is semi-
Fredholm if it satisfies the closed range condition of and one of the two other
conditions, so either the null space is finite dimensional or the null space of the
adjoint is finite dimensional. Despite what I may have said at one point in the
lecture

Lemma 2. The semi-Fredholm operators are open and dense in B(H).

Proof. The polar decomposition shows that A = (AA∗)
1
2V where V is a partial

isometry and (AA∗)
1
2 is non-negative and on the range of V. So we can add εPRan(V )

to make it an invertible map from one closed subspace of H to another. Now, if
one of the orthicomplements of these subspaces is finite dimensional then we have
a semi-Fredholm operator. If they are both infinite dimensional then there is an
isomorphism between them, adding a small multiple of this gives an (overall) small
perturbation in norm to an invertible operator. Thus the semi-Fredholm operators
are dense.

Now to see that they are open consider an operator F with finite dimensional
null space and closed range. Then F ∗F is self-adjoint and has finite dimensional
null space, it is also Fredholm.

�
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