
CHAPTER 6

Invertibility of elliptic operators

Next we will use the local elliptic estimates obtained earlier on open
sets in Rn to analyse the global invertibility properties of elliptic oper-
ators on compact manifolds. This includes at least a brief discussion
of spectral theory in the self-adjoint case.

1. Global elliptic estimates

For a single differential operator acting on functions on a compact
manifold we now have a relatively simple argument to prove global
elliptic estimates.

Proposition 1.1. If M is a compact manifold and P : C∞(M) −→
C∞(M) is a differential operator with C∞ coefficients which is elliptic
(in the sense that σm(P ) 6= 0) on T ∗M\0) then for any s, M ∈ R there
exist constants Cs, C

′
M such that

(1.1)
u ∈ HM(M), Pu ∈ Hs(M) =⇒ u ∈ Hs+m(M)

‖u‖s+m ≤ Cs‖Pu‖s + C ′M‖u‖M ,

where m is the order of P.

Proof. The regularity result in (1.1) follows directly from our ear-
lier local regularity results. Namely, if M =

⋃
a Ωa is a (finite) covering

of M by coordinate patches,

Fa : Ωa −→ Ω′a ⊂ Rn

then

(1.2) Pav = (F−1
a )∗PF ∗a v, v ∈ C∞c (Ω′a)

defines Pa ∈ Diffm(Ω′a) which is a differential operator in local coor-
dinates with smooth coefficients; the invariant definition of ellipticity
above shows that it is elliptic for each a. Thus if ϕa is a partition of
unity subordinate to the open cover and ψa ∈ C∞c (Ωa) are chosen with
ψa = 1 in a neighbourhood of supp(ϕa) then

(1.3) ‖ϕ′av‖s+m ≤ Ca,s‖ψ′aPav‖s + C ′a,m‖ψ′av‖M
149
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where ϕ′a = (F−1
a )∗ϕa and similarly for ψ′a(F

−1
a )∗ϕa ∈ C∞c (Ω′a), are

the local coordinate representations. We know that (1.3) holds for
every v ∈ C−∞(Ω′a) such that Pav ∈ HM

loc(Ω
′
a). Applying (1.3) to

(F−1
a )∗u = va, for u ∈ HM(M), it follows that Pu ∈ Hs(M) implies

Pava ∈ HM
loc(Ω

′
a), by coordinate-invariance of the Sobolev spaces and

then conversely

va ∈ Hs+m
loc (Ω′a) ∀ a =⇒ u ∈ Hs+m(M).

The norm on Hs(M) can be taken to be

‖u‖s =

(∑
a

‖(F−1
a )∗(ϕau)‖2

s

)1/2

so the estimates in (1.1) also follow from the local estimates:

‖u‖2
s+m =

∑
a

‖(F−1
a )∗(ϕau)‖2

s+m

≤
∑
a

Ca,s‖ψ′aPa(F−1
a )∗u‖2

s

≤ Cs‖Pu‖2
s + C ′M‖u‖2

M .

�

Thus the elliptic regularity, and estimates, in (1.1) just follow by
patching from the local estimates. The same argument applies to ellip-
tic operators on vector bundles, once we prove the corresponding local
results. This means going back to the beginning!

As discussed in Section 3, a differential operator between sections of
the bundles E1 and E2 is represented in terms of local coordinates and
local trivializations of the bundles, by a matrix of differential operators

P =

 P11(z,Dz) · · · P1`(z,Dz)
...

...
Pn1(z,Dz) · · · Pn`(z,Dz)

 .
The (usual) order of P is the maximum of the orders of the Pij(z,D3)
and the symbol is just the corresponding matrix of symbols

(1.4) σm(P )(z, ζ) =

 σm(P11)(z, ζ) · · · σm(P1`)(z, ζ)
...

...
σm(Pn1)(z, ζ) · · · σm(Pn`)(z, ζ)

 .
Such a P is said to be elliptic at z if this matrix is invariable for all
ζ 6= 0, ζ ∈ Rn. Of course this implies that the matrix is square, so the
two vector bundles have the same rank, `. As a differential operator,
P ∈ Diffm(M,E), E = E1, E2, is elliptic if it is elliptic at each point.



1. GLOBAL ELLIPTIC ESTIMATES 151

Proposition 1.2. If P ∈ Diffm(M,E) is a differential operator
between sections of vector bundles (E1, E2) = E which is elliptic of
order m at every point of M then

(1.5) u ∈ C−∞(M ;E1), Pu ∈ Hs(M,E) =⇒ u ∈ Hs+m(M ;E1)

and for all s, t ∈ R there exist constants C = Cs, C
′ = C ′s,t such that

(1.6) ‖u‖s+m ≤ C‖Pu‖s + C ′‖u‖t.
Furthermore, there is an operator

(1.7) Q : C∞(M ;E2) −→ C∞M ;E1)

such that

(1.8) PQ− Id2 = R2, QP − Id1 = R1

are smoothing operators.

Proof. As already remarked, we need to go back and carry the
discussion through from the beginning for systems. Fortunately this
requires little more than notational change.

Starting in the constant coefficient case, we first need to observe
that ellipticity of a (square) matrix system is equivalent to the elliptic-
ity of the determinant polynomial

(1.9) Dp(ζ) = det

 P11(ζ) · · · P1k(ζ)
...

...
Pk1(ζ) · · · Pkk(ζ)


which is a polynomial degree km. If the Pi’s are replaced by their
leading parts, of homogeneity m, then Dp is replaced by its leading part
of degree km. From this it is clear that the ellipticity at P is equivalent
to the ellipticity at Dp. Furthermore the invertibility of matrix in (1.9),
under the assumption of ellipticity, follows for |ζ| > C. The inverse can
be written

P (ζ)−1 = cof(P (ζ))/Dp(ζ).

Since the cofactor matrix represents the Fourier transform of a differen-
tial operator, applying the earlier discussion to Dp and then composing
with this differential operator gives a generalized inverse etc.

For example, if Ω ⊂ Rn is an open set and DΩ is the parameterix
constructed above for Dp on Ω then

QΩ = cof(P (D)) ◦DΩ

is a 2-sided parameterix for the matrix of operators P :

(1.10)
PQΩ − Idk×k = RR

QΩ − Idk×k = RL
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where RL, RR are k × k matrices of smoothing operators. Similar
considerations apply to the variable coefficient case. To construct the
global parameterix for an elliptic operator P we proceed as before to
piece together the local parameterices Qa for P with respect to a coor-
dinate patch over which the bundles E1, E2 are trivial. Then

Qf =
∑
a

F ∗aψ
′
aQaϕ

′
a(Fa)

−1f

is a global 1-sided parameterix for P ; here ϕa is a partition of unity
and ψa ∈ C∞c (Ωa) is equal to 1 in a neighborhood of its support. �

(Probably should be a little more detail.)

2. Compact inclusion of Sobolev spaces

For anyR > 0 consider the Sobolev spaces of elements with compact
support in a ball:

(2.1) Ḣs(B) = {u ∈ Hs(Rn);u) = 0 in |x| > 1}.

Lemma 2.1. Tthe inclusion map

(2.2) Ḣs(B) ↪→ Ḣ t(B) is compact if s > t.

Proof. Recall that compactness of a linear map between (sepa-
rable) Hilbert (or Banach) spaces is the condition that the image of
any bounded sequence has a convergent subsequence (since we are in
separable spaces this is the same as the condition that the image of
the unit ball have compact closure). So, consider a bounded sequence
un ∈ Ḣs(B). Now u ∈ Ḣs(B) implies that u ∈ Hs(Rn) and that φu = u
where φ ∈ C∞c (Rn) is equal to 1 in a neighbourhood of the unit ball.
Thus the Fourier transform satifies

(2.3) û = φ̂ ∗ û =⇒ û ∈ C∞(Rn).

In fact this is true with uniformity. That is, one can bound any deriv-
ative of û on a compact set by the norm

(2.4) sup
|z|≤R

|Djû|+ max
j

sup
|z|≤R

|Djû| ≤ C(R)‖u‖Hs

where the constant does not depend on u. By the Ascoli-Arzela the-
orem, this implies that for each R the sequence ûn has a convergent
subsequence in C({|ζ| ≤ R}). Now, by diagonalization we can extract a
subsequence which converges in Vc({|ζ| ≤ R}) for every R. This implies
that the restriction to {|ζ| ≤ R} converges in the weighted L2 norm
corresponding to H t, i.e. that (1 + |ζ|2)t/2χRûnj → (1 + |ζ|2)t/2χRv̂
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in L2 where χR is the characteristic function of the ball of radius R.
However the boundedness of un in Hs strengthens this to

(1 + |ζ|2)t/2ûnj → (1 + |ζ|2)t/2v̂ in L2(Rn).

Namely, the sequence is Cauchy in L(Rn) and hence convergnet. To
see this, just note that for ε > 0 one can first choose R so large that
the norm outside the ball is
(2.5)∫
|ζ|≥R

(1+|ζ|2)t|un|2dζ ≤ (1+R2)
s−t
2

∫
|ζ|≥R

(1+|ζ|2)s|un|2dζ ≤ C(1+R2)
s−t
2 < ε/2

where C is the bound on the norm in Hs. Now, having chosen R, the
subsequence converges in |ζ| ≤ R. This proves the compactness. �

Once we have this local result we easily deduce the global result.

Proposition 2.2. On a compact manifold the inclusion Hs(M) ↪→
H t(M), for any s > t, is compact.

Proof. If φi ∈ C∞c (Ui) is a partition of unity subordinate to an
open cover of M by coordinate patches gi : Ui −→ U ′i ⊂ Rn, then

(2.6) u ∈ Hs(M) =⇒ (g−1
i )∗φiu ∈ Hs(Rn), supp((g−1

i )∗φiu) b U ′i .

Thus if un is a bounded sequence in Hs(M) then the (g−1
i )∗φiun form

a bounded sequence in Hs(Rn) with fixed compact supports. It follows
from Lemma 2.1 that we may choose a subsequence so that each φiunj
converges in H t(Rn). Hence the subsequence unj converges in H t(M).

�

3. Elliptic operators are Fredholm

If V1, V2 are two vector spaces then a linear operator P : V1 → V2 is
said to be Fredholm if these are finite-dimensional subspaces N1 ⊂ V1,
N2 ⊂ V2 such that

(3.1)
{v ∈ V1; Pv = 0} ⊂ N1

{w ∈ V2; ∃ v ∈ V1, Pv = w}+N2 = V2.

The first condition just says that the null space is finite-dimensional
and the second that the range has a finite-dimensional complement –
by shrinking N1 and N2 if necessary we may arrange that the inclusion
in (3.1) is an equality and that the sum is direct.
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Theorem 3.1. For any elliptic operator, P ∈ Diffm(M ;E), acting
between sections of vector bundles over a compact manifold,

P : Hs+m(M ;E1) −→ Hs(M ;E2)

and P : C∞(M ;E1) −→ C∞(M ;E2)

are Fredholm for all s ∈ R.

The result for the C∞ spaces follows from the result for Sobolev
spaces. To prove this, consider the notion of a Fredholm operator
between Hilbert spaces,

P : H1 −→ H2.(3.2)

In this case we can unwind the conditions (3.1) which are then equiv-
alent to the three conditions

(3.3)

Nul(P ) ⊂ H1 is finite-dimensional.

Ran(P ) ⊂ H2 is closed.

Ran(P ))⊥ ⊂ H2 is finite-dimensional.

Note that any subspace of a Hilbert space with a finite-dimensional
complement is closed so (3.3) does follow from (3.1). On the other
hand the ortho-complement of a subspace is the same as the ortho-
complement of its closure so the first and the third conditions in (3.3)
do not suffice to prove (3.1), in general. For instance the range of an
operator can be dense but not closed.

The main lemma we need, given the global elliptic estimates, is a
standard one:-

Lemma 3.2. If R : H −→ H is a compact operator on a Hilbert
space then Id−R is Fredholm.

Proof. A compact operator is one which maps the unit ball (and
hence any bounded subset) of H into a precompact set, a set with
compact closure. The unit ball in the null space of Id−R is

{u ∈ H; ‖u‖ = 1, u = Ru} ⊂ R{u ∈ H; ‖u‖ = 1}
and is therefore precompact. Since is it closed, it is compact and any
Hilbert space with a compact unit ball is finite-dimensional. Thus the
null space of Id−R is finite-dimensional.

Consider a sequence un = vn − Rvn in the range of Id−R and
suppose un → u in H; we need to show that u is in the range of Id−R.
We may assume u 6= 0, since 0 is in the range, and by passing to a
subsequence suppose that ‖un‖ 6= 0; ‖un‖ → ‖u‖ 6= 0 by assumption.
Now consider wn = vn/‖vn‖. Since ‖un‖ 6= 0, infn ‖vn‖ 6= 0, since other
wise there is a subsequence converging to 0, and so wn is well-defined
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and of norm 1. Since wn = Rwn +un/‖vn‖ and ‖vn‖ is bounded below,
wn must have a convergence subsequence, by the compactness of R.
Passing to such a subsequence, and relabelling, wn → w, un → u,
un/‖vn‖ → cu, c ∈ C. If c = 0 then (Id−R)w = 0. However, we can
assume in the first place that un ⊥ Nul(Id−R) , so the same is true
of wn. As ‖w‖ = 1 this is a contradiction, so ‖vn‖ is bounded above,
c 6= 0, and hence there is a solution to (Id−R)w = u. Thus the range
of Id−R is closed.

The ortho-complement of the range Ran(Id−R)⊥ is the null space
at Id−R∗ which is also finite-dimensional since R∗ is compact. Thus
Id−R is Fredholm. �

Proposition 3.3. Any smoothing operator on a compact manifold
is compact as an operator between (any) Sobolev spaces.

Proof. By definition a smoothing operator is one with a smooth
kernel. For vector bundles this can be expressed in terms of local
coordinates and a partition of unity with trivialization of the bundles
over the supports as follows.

(3.4)

Ru =
∑
a,b

ϕbRϕau

ϕbRϕau = F ∗b ϕ
′
bRabϕ

′
a(F

−1
a )∗u

Rabv(z) =

∫
Ω′a

Rab(z, z
′)v(z′), z ∈ Ω′b, v ∈ C∞c (Ω′a;E1)

where Rab is a matrix of smooth sections of the localized (hence trivial
by refinement) bundle on Ω′b×Ωa. In fact, by inserting extra cutoffs in
(3.4), we may assume that Rab has compact support in Ω′b×Ω′a. Thus,
by the compactness of sums of compact operators, it suffices to show
that a single smoothing operator of compact support compact support
is compact on the standard Sobolev spaces. Thus if R ∈ C∞c (R2n

(3.5) HL′(Rn) 3 u 7→
∫
Rn
R(z) ∈ HL(Rn)

is compact for any L, L′. By the continuous inclusion of Sobolev spaces
it suffices to take L′ = −L with L a large even integer. Then (∆+1)L/2

is an isomorphism from (L2(Rn)) to H−L(R2) and from HL(Rn) to
L2(Rn). Thus the compactness of (3.5) is equivalent to the compactness
of

(3.6) (∆ + 1)L/2R(∆ + 1)L/2 on L2(Rn).

This is still a smoothing operator with compactly supported kernel,
then we are reduced to the special case of (3.5) for L = L′ = 0. Finally
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then it suffices to use Sturm’s theorem, that R is uniformly approx-
imated by polynomials on a large ball. Cutting off on left and right
then shows that

ρ(z)Ri(z, z
′)ρ(z′)→ Rz, z′) uniformly on R2n

the Ri is a polynomial (and ρ(z)ρ(z′) = 1 on supp(R)) with ρ ∈
C∞c (Rn). The uniform convergence of the kernels implies the conver-
gence of the operators on L2(Rn) in the norm topology, so R is in
the norm closure of the finite rank operators on L2(Rn), hence is com-
pact. �

Proof of Theorem 3.1. We know that P has a 2-sided param-
eterix Q : Hs(M ;E2) −→ Hs+m(M ;E1) (for any s) such that

PQ− Id2 = R2, QP − Id2 = R1,

are both smoothing (or at least CN for arbitrarily large N) operators.
Then we can apply Proposition 3.3 and Lemma 3.2. First

QP = Id−R1 : Hs+m(M ;E1) −→ Hs+m(M ;E2)

have finite-dimensional null spaces. However, the null space of P
is certainly contained in the null space of Id−R, so it too is finite-
dimensional. Similarly,

PQ = Id−R1 : Hs(M ;E2) −→ Hs(M ;E2)

has closed range of finite codimension. But the range of P certainly
contains the range of Id−R so it too must be closed and of finite
codimension. Thus P is Fredholm as an operator from Hs+m(M ;E2)
to Hs(M ;E2) for any s ∈ R.

So consider P as an operator on the C∞ spaces. The null space
of P : Hm(M ;E1) −→ H0(M ;E2) consists of C∞ sections, by elliptic
regularity, so must be equal to the null space on C∞(M ;E1) — which
is therefore finite-dimensional. Similarly consider the range of P :
Hm(M ;E1) −→ H0(M ;E2). We know this to have a finite-dimensional
complement, with basis v1, . . . , vn ∈ H0(M ;E2). By the density of
C∞(M ;E2) in L2(M ;E2) we can approximate the vi’s closely by wi ∈
C∞(M ;E2). On close enough approximation, the wi must span the
complement. Thus PHm(M ;E1) has a complement in L2(M ;E2) which
is a finite-dimensional subspace of C∞(M ;E2); call this N2. If f ∈
C∞(M ;E2) ⊂ L2(M ;E2) then there are constants ci such that

f −
N∑
i=1

ciwi = Pu, u ∈ Hm(M ;E1).
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Again by elliptic regularity, u ∈ C∞(M ;E1) thus N2 is a complement
to PC∞(M ;E1) in C∞(M ;E2) and P is Fredholm. �

The point of Fredholm operators is that they are ‘almost invert-
ible’ — in the sense that they are invertible up to finite-dimensional
obstructions. However, a Fredholm operator may not itself be close to
an invertible operator. This defect is measured by the index

ind(P ) = dim Nul(P )− dim(Ran(P )⊥)

P : Hm(M ;E1) −→ L2(M ;E2).

4. Generalized inverses

Written, at least in part, by Chris Kottke.
As discussed above, a bounded operator between Hilbert spaces,

T : H1 −→ H2

is Fredholm if and only if it has a parametrix up to compact errors,
that is, there exists an operator

S : H2 −→ H1

such that
TS − Id2 = R2, ST − Id1 = R1

are both compact on the respective Hilbert spaces H1 and H2. In this
case of Hilbert spaces there is a “preferred” parametrix or generalized
inverse.

Recall that the adjoint

T ∗ : H2 −→ H1

of any bounded operator is defined using the Riesz Representation The-
orem. Thus, by the continuity of T , for any u ∈ H2,

H1 3 φ −→ 〈Tφ, u〉 ∈ C
is continuous and so there exists a unique v ∈ H1 such that

〈Tφ, u〉2 = 〈φ, v〉1, ∀ φ ∈ H1.

Thus v is determined by u and the resulting map

H2 3 u 7→ v = T ∗u ∈ H1

is easily seen to be continuous giving the adjoint identity

(4.1) 〈Tφ, u〉 = 〈φ, T ∗u〉, ∀ φ ∈ H1, u ∈ H2

In particular it is always the case that

(4.2) Nul(T ∗) = (Ran(T ))⊥
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as follows directly from (4.1). As a useful consequence, if Ran(T ) is
closed, then H2 = Ran(T )⊕ Nul(T ∗) is an orthogonal direct sum.

Proposition 4.1. If T : H1 −→ H2 is a Fredholm operator between
Hilbert spaces then T ∗ is also Fredholm, ind(T ∗) = − ind(T ), and T has
a unique generalized inverse S : H2 −→ H1 satisfying

(4.3) TS = Id2−ΠNul(P ∗), ST = Id1−ΠNul(P )

Proof. A straightforward exercise, but it should probably be writ-
ten out! �

Notice that ind(T ) is the difference of the two non-negative integers
dim Nul(T ) and dim Nul(T ∗). Thus

dim Nul(T ) ≥ ind(T )(4.4)

dim Nul(T ∗) ≥ − ind(T )(4.5)

so if ind(T ) 6= 0 then T is definitely not invertible. In fact it cannot
then be made invertible by small bounded perturbations.

Proposition 4.2. If H1 and H2 are two seperable, infinite-dimensional
Hilbert spaces then for all k ∈ Z,

Frk = {T : H1 −→ H2; T is Fredholm and ind(T ) = k}
is a non-empty subset of B(H1, H2), the Banach space of bounded op-
erators from H1 to H2.

Proof. All separable Hilbert spaces of infinite dimension are iso-
morphic, so Fr0 is non-empty. More generally if {ei}∞i=1 is an orthonor-
mal basis of H1, then the shift operator, determined by

Skei =

 ei+k, i ≥ 1, k ≥ 0
ei+k, i ≥ −k, k ≤ 0
0, i < −k

is easily seen to be Fredholm of index k in H1. Composing with an
isomorphism to H2 shows that Frk 6= ∅ for all k ∈ Z. �

One important property of the spaces Frk(H1, H2) is that they are
stable under compact perturbations; that is, if K : H1 −→ H2 is a
compact operator and T ∈ Frk then (T + K) ∈ Frk . That (T + K) is
Fredholm is clear, sinces a parametrix for T is a parametrix for T +K,
but it remains to show that the index itself is stable and we do this
in steps. In what follows, take T ∈ Frk(H1, H2) with kernel N1 ⊂ H1.
Define T̃ by the factorization

(4.6) T : H1 −→ H̃1 = H1/N1
T̃−→ RanT ↪→ H2,
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so that T̃ is invertible.

Lemma 4.3. Suppose T ∈ Frk(H1, H2) has kernel N1 ⊂ H1 and
M1 ⊃ N1 is a finite dimensional subspace of H1 then defining T ′ = T
on M⊥

1 and T ′ = 0 on M1 gives an element T ′ ∈ Frk .

Proof. Since N1 ⊂ M1, T
′ is obtained from (4.6) by replacing

T̃ by T̃ ′ which is defined in essentially the same way as T ′, that is
T̃ ′ = 0 on M1/N1, and T̃ ′ = T̃ on the orthocomplement. Thus the
range of T̃ ′ in Ran(T ) has complement T̃ (M1/N1) which has the same
dimension as M1/N1. Thus T ′ has null space M1 and has range in H2

with complement of dimension that of M1/N1 + N2, and hence has
index k. �

Lemma 4.4. If A is a finite rank operator A : H1 −→ H2 such that
RanA ∩ RanT = {0}, then T + A ∈ Frk .

Proof. First note that Nul(T + A) = NulT ∩ NulA since

x ∈ Nul(T+A)⇔ Tx = −Ax ∈ RanT∩RanA = {0} ⇔ x ∈ NulT∩NulA.

Similarly the range of T+A restricted to NulT meets the range of T+A
restricted to (nullT )⊥ only in 0 so the codimension of the Ran(T +A)
is the codimension of RanAN where AN is A as a map from NulT to
H2/RanT. So, the equality of row and column rank for matrices,

codim Ran(T+A) = codim RanT−dim Nul(AN) = dim Nul(T )−k−dim Nul(AN) = dim Nul(T+A)−k.

Thus T + A ∈ Frk . �

Proposition 4.5. If A : H1 −→ H2 is any finite rank operator,
then T + A ∈ Frk .

Proof. Let E2 = RanA∩RanT , which is finite dimensional, then
E1 = T̃−1(E2) has the same dimension. Put M1 = E1 ⊕N1 and apply
Lemma 4.3 to get T ′ ∈ Frk with kernel M1. Then

T + A = T ′ + A′ + A

where A′ = T on E1 and A′ = 0 on E⊥1 . Then A′ + A is a finite rank
operator and Ran(A′ + A) ∩ RanT ′ = {0} and Lemma 4.4 applies.
Thus

T + A = T ′ + (A′ + A) ∈ Frk(H1, H2).

�

Proposition 4.6. If B : H1 −→ H2 is compact then T +B ∈ Frk .
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Proof. A compact operator is the sum of a finite rank operator
and an operator of arbitrarily small norm so it suffices to show that
T +C ∈ Frk where ‖C‖ < ε for ε small enough and then apply Propo-
sition 4.5. Let P : H1 −→ H̃1 = H1/N1 and Q : H2 −→ RanT be
projection operators. Then

C = QCP +QC(Id−P ) + (Id−Q)CP + (Id−Q)C(Id−P )

the last three of which are finite rank operators. Thus it suffices to
show that

T̃ +QC : H̃1 −→ RanT

is invertible. The set of invertible operators is open, by the convergence
of the Neumann series so the result follows. �

Remark 1. In fact the Frk are all connected although I will not use
this below. In fact this follows from the multiplicativity of the index:-

(4.7) Frk ◦Frl = Frk+l

and the connectedness of the group of invertible operators on a Hilbert
space. The topological type of the Frk is actually a point of some
importance. A fact, which you should know but I am not going to
prove here is:-

Theorem 4.7. The open set Fr =
⋃
k Frk in the Banach space of

bounded operators on a separable Hilbert space is a classifying space
for even K-theory.

That is, if X is a reasonable space – for instance a compact manifold
– then the space of homotopy classes of continuous maps into Fr may be
canonically identified as an Abelian group with the (complex) K-theory
of X :

(4.8) K0(X) = [X; Fr].

5. Self-adjoint elliptic operators

Last time I showed that elliptic differential operators, acting on
functions on a compact manifold, are Fredholm on Sobolev spaces.
Today I will first quickly discuss the rudiments of spectral theory for
self-adjoint elliptic operators and then pass over to the general case
of operators between sections of vector bundles (which is really only
notationally different from the case of operators on functions).

To define self-adjointness of an operator we need to define the ad-
joint! To do so requires invariant integration. I have already talked
about this a little, but recall from 18.155 (I hope) Riesz’ theorem iden-
tifying (appropriately behaved, i.e. Borel outer continuous and inner
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regular) measures on a locally compact space with continuous linear
functionals on C0

0(M) (the space of continuous functions ‘vanishing at
infinity’). In the case of a manifold we define a smooth positive mea-
sure, also called a positive density, as one given in local coordinates by
a smooth positive multiple of the Lebesgue measure. The existence of
such a density is guaranteed by the existence of a partition of unity
subordinate to a coordinate cover, since the we can take

(5.1) ν =
∑
j

φjf
∗
j |dz|

where |dz| is Lebesgue measure in the local coordinate patch corre-
sponding to fj : Uj −→ U ′j. Since we know that a smooth coordinate
transforms |dz| to a positive smooth multiple of the new Lebesque mea-
sure (namely the absolute value of the Jacobian) and two such positive
smooth measures are related by

(5.2) ν ′ = µν, 0 < µ ∈ C∞(M).

In the case of a compact manifold this allows one to define integra-
tion of functions and hence an inner product on L2(M),

(5.3) 〈u, v〉ν =

∫
M

u(z)v(z)ν.

It is with respect to such a choice of smooth density that adjoints are
defined.

Lemma 5.1. If P : C∞(M) −→ C∞(M) is a differential opera-
tor with smooth coefficients and ν is a smooth positive measure then
there exists a unque differential operator with smooth coefficients P ∗ :
C∞(M) −→ C∞(M) such that

(5.4) 〈Pu, v〉ν = 〈u, P ∗v〉ν ∀ u, v ∈ C∞(M).

Proof. First existence. If φi is a partition of unity subordinate to
an open cover of M by coordinate patches and φ′i ∈ C∞(M) have sup-
ports in the same coordinate patches, with φ′i = 1 in a neighbourhood
of supp(φi) then we know that

(5.5) Pu =
∑
i

φ′iPφiu =
∑
i

f ∗i Pi(f
−1
i )∗u

where fi : U)i −→ U ′i are the coordinate charts and Pi is a differential
operator on U ′i with smooth coefficients, all compactly supported in U ′i .
The existence of P ∗ follows from the existence of (φ′iPφi)

∗ and hence
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P ∗i in each coordinate patch, where the P ∗i should satisfy

(5.6)

∫
U ′i

(Pi)u
′v′µ′dz =

∫
U ′i

u′P ∗i v
′µ′dz, ∀ u′, v′ ∈ C∞(U ′i).

Here ν = µ′|dz| with 0 < µ′ ∈ C∞(U ′i) in the local coordinates. So in
fact P ∗i is unique and given by

(5.7) P ∗i (z,D)v′ =
∑
|α|≤m

(µ′)−1Dαpα(z)µ′v′ if Pi =
∑
|α|≤m

pα(z)Dα.

The uniqueness of P ∗ follows from (5.4) since the difference of two
would be an operator Q : C∞(M) −→ C∞(M) satisfying

(5.8) 〈u,Qv〉ν = 0 ∀ u, v ∈ C∞(M)

and this implies that Q = 0 as an operator. �

Proposition 5.2. If P : C∞(M) −→ C∞(M) is an elliptic differ-
ential operator of order m > 0 which is (formally) self-adjoint with
respect to some smooth positive density then
(5.9)
spec(P ) = {λ ∈ C; (P−λ) : C∞(M) −→ C∞(M) is not an isomorphism}
is a discrete subset of R, for each λ ∈ spec(P )

(5.10) E(λ) = {u ∈ C∞(M);Pu = λu}
is finite dimensional and

(5.11) L2(M) =
∑

λ∈spec(P )

E(λ) is orthogonal.

Formal self-adjointness just means that P ∗ = P as differential operators
acting on C∞(M). Actual self-adjointness means a little more but this
follows easily from formal self-adjointness and ellipticity.

Proof. First notice that spec(P ) ⊂ R since if Pu = λu with
u ∈ C∞(M) then

(5.12) λ‖u‖ν2 = 〈Pu, u〉 = 〈u, Pu〉 = λ̄‖u‖ν2

so λ /∈ R implies that the null space of P − λ is trivial. Since we
know that the range is closed and has complement the null space of
(P − λ)∗ = P − λ̄ it follows that P − λ is an isomorphism on C∞(M)
if λ /∈ R.

If λ ∈ R then we also know that E(λ) is finite dimensional. For
any λ ∈ R suppose that (P −λ)u = 0 with u ∈ C∞(M). Then we know
that P − λ is an isomorphism from E(λ)⊥ to itself which extends by
continuity to an isomorphism from the closure of E⊥(λ) in Hm(M) to
E⊥(λ) ⊂ L2(M). It follows that P −λ′ defines such an isomorphism for
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|λ = l′| < ε for some ε > 0. However acting on E(λ), P − λ′ = (λ− λ′)
is also an isomorphism for λ′ 6= λ so P − λ′ is an isomorphism. This
shows that E(λ′) = {0} for |λ′ − λ| < ε.

This leaves the completeness statement, (5.11). In fact this re-
ally amounts to the existence of a non-zero eigenvalue as we shall see.
Consider the generalized inverse of P acting on L2(M). It maps the or-
thocomplement of the null space to itself and is a compact operator, as
follows from the a priori estimats for P and the compactness of the em-
bedding of Hm(M) in L2(M) for m > 0. Futhermore it is self-adjoint.
A standard result shows that a compact self-adjoint operator either has
a non-zero eigenvalue or is itself zero. For the completeness it is enough
to show that the generalized inverse maps the orthocomplement of the
span of the E(λ) in L2(M) into itself and is compact. It is therefore
either zero or has a non-zero eigenvalue. Any corresponding eigenfunc-
tion would be an eigenfunction of P and hence in one of the E(λ) so
this operator must be zero, meaning that (5.11) holds. �

For single differential operators we first considered constant coef-
ficient operators, then extended this to variable coefficient operators
by a combination of perturbation (to get the a priori estimates) and
construction of parametrices (to get approximation) and finally used
coordinate invariance to transfer the discussion to a (compact) mani-
fold. If we consider matrices of operators we can follow the same path,
so I shall only comment on the changes needed.

A k × l matrix of differential operators (so with k rows and l
columns) maps l-vectors of smooth functions to k vectors:

(5.13) Pij(D) =
∑
|α|≤m

cα,i,jD
α, (P (D)u)i(z) =

∑
j

Pij(D)uj(z).

The matrix Pij(ζ) is invertible if and only if k = l and the polyno-
mial of order mk, detP (ζ) 6= 0. Such a matrix is said to be elliptic if
detP (ζ) is elliptic. The cofactor matrix defines a matrix P ′ of differ-
ential operators of order (k− 1)m and we may construct a parametrix
for P (assuming it to be elliptic) from a parametrix for detP :

(5.14) QP = QdetPP
′(D).

It is then easy to see that it has the same mapping properties as in the
case of a single operator (although notice that the product is no longer
commutative because of the non-commutativity of matrix multiplica-
tion)

(5.15) QPP = Id−RL, PQP = Id−RR
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where RL and RR are given by matrices of convolution operators with
all elements being Schwartz functions. For the action on vector-valued
functions on an open subset of Rn we may proceed exactly as before,
cutting off the kernel of QP with a properly supported function which
is 1 near the diagonal

(5.16) QΩf(z) =

∫
Ω

q(z − z′)χ(z, z′)f(z′)dz′.

The regularity estimates look exactly the same as before if we define
the local Sobolev spaces to be simply the direct sum of k copies of the
usual local Sobolev spaces
(5.17)
Pu = f ∈ Hs

loc(Ω) =⇒ ‖ψu‖s+m ≤ C‖ψP (D)u‖s+C ′‖φu‖m−1 or ‖ψu‖s+m ≤ C‖φP (D)u‖s+C ′′‖φu‖M
where ψ, φ ∈ C∞c (Ω) and φ = 1 in a neighbourhood of ψ (and in the
second case C ′′ depends on M.

Now, the variable case proceed again as before, where now we are
considering a k × k matrix of differential operators of order m. I will
not go into the details. A priori estimates in the first form in (5.17),
for functions ψ with small support near a point, follow by perturbation
from the constant coefficient case and then in the second form by use
of a partition of unity. The existence of a parametrix for the variable
coefficient matrix of operators also goes through without problems –
the commutativity which disappears in the matrix case was not used
anyway.

As regards coordinate transformations, we get the same results as
before. It is also notural to allow transformations by variable coefficient
matrices. Thus if Gi(z) ∈ C∞(Ω; GL(k,C) i = 1, 2, are smooth family
of invertible matrices we may consider the composites PG2 or G−1

1 P,
or more usually the ‘conjugate’ operator

(5.18) G−1
1 P (z,D)G)2 = P ′(z,D).

This is also a variable coefficient differential operator, elliptic if and
only if P (z,D) is elliptic. The Sobolev spaces Hs

loc(Ω;Rk) are invariant
under composition with such matrices, since they are the same in each
variable.

Combining coordinate transformations and such matrix conjugation
allows us to consider not only manifolds but also vector bundles over
manifolds. Let me briefly remind you of what this is about. Over
an open subset Ω ⊂ Rn one can introduce a vector bundle as just a
subbundle of some trivial N -dimensional bundle. That is, consider a
smooth N × N matrix Π ∈ C∞(Ω;M(N,C)) on Ω which is valued in
the projections (i.e. idempotents) meaning that Π(z)Π(z) = Π(z) for
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all z ∈ Ω. Then the range of Π(z) defines a linear subspace of CN for
each z ∈ Ω and together these form a vector bundle over Ω. Namely
these spaces fit together to define a manifold of dimension n+ k where
k is the rank of Π(z) (constant if Ω is connected, otherwise require it
be the same on all components)

(5.19) EΩ =
⋃
z∈Ω

Ez, Ez = Π(z)CN .

If z̄ ∈ Ω then we may choose a basis of Ez̄ and so identify it with
Ck. By the smoothness of Π(z) in z it follows that in some small ball
B(z̄, r), so that ‖Π(z)(Π(z)− Π(z̄))Π(z)‖ < 1

2
) the map

(5.20)

EB(z̄,r) =
⋃

z∈B(z̄,r)

Ez, Ez = Π(z)CN 3 (z, u) 7−→ (z, E(z̄)u) ∈ B(z̄, r)×Ez̄ ' B(z̄, r)×Ck

is an isomorphism. Injectivity is just injectivity of each of the maps
Ez −→ Ez̄ and this follows from the fact that Π(z)Π(z̄)Π(z) is invert-
ible on Ez; this also implies surjectivity.

6. Index theorem

Addenda to Chapter 6




