
CHAPTER 3

Distributions

1. Test functions

So far we have largely been dealing with integration. One thing we
have seen is that, by considering dual spaces, we can think of functions
as functionals. Let me briefly review this idea.

Consider the unit ball in Rn,

Bn = {x ∈ Rn ; |x| ≤ 1} .

I take the closed unit ball because I want to deal with a compact metric
space. We have dealt with several Banach spaces of functions on Bn,
for example

C(Bn) =
{
u : Bn → C ; u continuous

}
L2(Bn) =

{
u : Bn → C; Borel measurable with

∫
|u|2 dx <∞

}
.

Here, as always below, dx is Lebesgue measure and functions are iden-
tified if they are equal almost everywhere.

Since Bn is compact we have a natural inclusion

(1.1) C(Bn) ↪→ L2(Bn) .

This is also a topological inclusion, i.e., is a bounded linear map, since

(1.2) ‖u‖L2 ≤ C‖u||∞

where C2 is the volume of the unit ball.
In general if we have such a set up then

Lemma 1.1. If V ↪→ U is a subspace with a stronger norm,

‖ϕ‖U ≤ C‖ϕ‖V ∀ ϕ ∈ V

then restriction gives a continuous linear map

(1.3) U ′ → V ′, U ′ 3 L 7−→ L̃ = L|V ∈ V ′, ‖L̃‖V ′ ≤ C‖L‖U ′ .

If V is dense in U then the map (6.9) is injective.

43



44 3. DISTRIBUTIONS

Proof. By definition of the dual norm

‖L̃‖V ′ = sup
{∣∣∣L̃(v)

∣∣∣ ; ‖v‖V ≤ 1 , v ∈ V
}

≤ sup
{∣∣∣L̃(v)

∣∣∣ ; ‖v‖U ≤ C , v ∈ V
}

≤ sup {|L(u)| ; ‖u‖U ≤ C , u ∈ U}
= C‖L‖U ′ .

If V ⊂ U is dense then the vanishing of L : U → C on V implies its
vanishing on U .

�

Going back to the particular case (6.8) we do indeed get a contin-
uous map between the dual spaces

L2(Bn) ∼= (L2(Bn))′ → (C(Bn))′ = M(Bn) .

Here we use the Riesz representation theorem and duality for Hilbert
spaces. The map use here is supposed to be linear not antilinear, i.e.,

(1.4) L2(Bn) 3 g 7−→
∫
·g dx ∈ (C(Bn))′ .

So the idea is to make the space of ‘test functions’ as small as reasonably
possible, while still retaining density in reasonable spaces.

Recall that a function u : Rn → C is differentiable at x ∈ Rn if
there exists a ∈ Cn such that

(1.5) |u(x)− u(x)− a · (x− x)| = o(|x− x|) .
The ‘little oh’ notation here means that given ε > 0 there exists δ > 0
s.t.

|x− x| < δ ⇒ |u(x)− u(x)− a(x− x)| < ε |x− x| .
The coefficients of a = (a1, . . . , an) are the partial derivations of u at
x,

ai =
∂u

∂xj
(x)

since

(1.6) ai = lim
t→0

u(x+ tei)− u(x)

t
,

ei = (0, . . . , 1, 0, . . . , 0) being the ith basis vector. The function u is
said to be continuously differentiable on Rn if it is differentiable at each
point x ∈ Rn and each of the n partial derivatives are continuous,

(1.7)
∂u

∂xj
: Rn → C .
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Definition 1.2. Let C1
0(Rn) be the subspace of C0(Rn) = C0

0(Rn)
such that each element u ∈ C1

0(Rn) is continuously differentiable and
∂u
∂xj
∈ C0(Rn), j = 1, . . . , n.

Proposition 1.3. The function

‖u‖C1 = ‖u‖∞ +
n∑
i=1

‖ ∂u
∂x1

‖∞

is a norm on C1
0(Rn) with respect to which it is a Banach space.

Proof. That ‖ ‖C1 is a norm follows from the properties of ‖ ‖∞.
Namely ‖u‖C1 = 0 certainly implies u = 0, ‖au‖C1 = |a| ‖u‖C1 and the
triangle inequality follows from the same inequality for ‖ ‖∞.

Similarly, the main part of the completeness of C1
0(Rn) follows from

the completeness of C0
0(Rn). If {un} is a Cauchy sequence in C1

0(Rn)
then un and the ∂un

∂xj
are Cauchy in C0

0(Rn). It follows that there are

limits of these sequences,

un → v ,
∂un
∂xj
→ vj ∈ C0

0(Rn) .

However we do have to check that v is continuously differentiable and
that ∂v

∂xj
= vj.

One way to do this is to use the Fundamental Theorem of Calculus
in each variable. Thus

un(x+ tei) =

∫ t

0

∂un
∂xj

(x+ sei) ds+ un(x) .

As n→∞ all terms converge and so, by the continuity of the integral,

u(x+ tei) =

∫ t

0

vj(x+ sei) ds+ u(x) .

This shows that the limit in (6.20) exists, so vi(x) is the partial deriva-
tion of u with respect to xi. It remains only to show that u is indeed
differentiable at each point and I leave this to you in Problem 17.

�

So, almost by definition, we have an example of Lemma 6.17,

C1
0(Rn) ↪→ C0

0(Rn).

It is in fact dense but I will not bother showing this (yet). So we know
that

(C0
0(Rn))′ → (C1

0(Rn))′

and we expect it to be injective. Thus there are more functionals on
C1

0(Rn) including things that are ‘more singular than measures’.
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An example is related to the Dirac delta

δ(x)(u) = u(x) , u ∈ C0
0(Rn) ,

namely

C1
0(Rn) 3 u 7−→ ∂u

∂xj
(x) ∈ C .

This is clearly a continuous linear functional which it is only just to
denote ∂

∂xj
δ(x).

Of course, why stop at one derivative?

Definition 1.4. The space Ck0 (Rn) ⊂ C1
0(Rn) k ≥ 1 is defined in-

ductively by requiring that

∂u

∂xj
∈ Ck−1

0 (Rn) , j = 1, . . . , n .

The norm on Ck0 (Rn) is taken to be

(1.8) ‖u‖Ck = ‖u‖Ck−1 +
n∑
j=1

‖ ∂u
∂xj
‖Ck−1 .

These are all Banach spaces, since if {un} is Cauchy in Ck0 (Rn),
it is Cauchy and hence convergent in Ck−1

0 (Rn), as is ∂un/∂xj, j =
1, . . . , n− 1. Furthermore the limits of the ∂un/∂xj are the derivatives
of the limits by Proposition 1.3.

This gives us a sequence of spaces getting ‘smoother and smoother’

C0
0(Rn) ⊃ C1

0(Rn) ⊃ · · · ⊃ Ck0 (Rn) ⊃ · · · ,

with norms getting larger and larger. The duals can also be expected
to get larger and larger as k increases.

As well as looking at functions getting smoother and smoother, we
need to think about ‘infinity’, since Rn is not compact. Observe that
an element g ∈ L1(Rn) (with respect to Lebesgue measure by default)
defines a functional on C0

0(Rn) — and hence all the Ck0 (Rn)s. However a
function such as the constant function 1 is not integrable on Rn. Since
we certainly want to talk about this, and polynomials, we consider a
second condition of smallness at infinity. Let us set

(1.9) 〈x〉 = (1 + |x|2)1/2

a function which is the size of |x| for |x| large, but has the virtue of
being smooth1

1See Problem 18.
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Definition 1.5. For any k, l ∈ N = {1, 2, · · · } set

〈x〉−lCk0 (Rn) =
{
u ∈ Ck0 (Rn) ; u = 〈x〉−lv , v ∈ Ck0 (Rn)

}
,

with norm, ‖u‖k,l = ‖v‖Ck , v = 〈x〉lu.

Notice that the definition just says that u = 〈x〉−lv, with v ∈
Ck0 (Rn). It follows immediately that 〈x〉−lCk0 (Rn) is a Banach space
with this norm.

Definition 1.6. Schwartz’ space2 of test functions on Rn is

S(Rn) =
{
u : Rn → C;u ∈ 〈x〉−lCk0 (Rn) for all k and l ∈ N

}
.

It is not immediately apparent that this space is non-empty (well
0 is in there but...); that

(1.10) P (x) exp(− |x|2) ∈ S(Rn)

for any polynomial P is Problem 19.

Corollary 1.7. S(Rn) is infinite-dimensional.

In fact the linear space in (1.10) turns out to be dense in S(Rn)
when we sort out the topology – so it will be separable.

Schwartz’ idea is that the dual of S(Rn) should contain all the ‘in-
teresting’ objects, at least those of ‘polynomial growth’. The problem
is that we do not have a good norm on S(Rn). Rather we have a lot of
them. Observe that

〈x〉−lCk0 (Rn) ⊂ 〈x〉−l′Ck′0 (Rn) if l ≥ l′ and k ≥ k′ .

Thus we see that as a linear space

(1.11) S(Rn) =
⋂
k

〈x〉−kCk0 (Rn).

Since these spaces are getting smaller, we have a countably infinite
number of norms. For this reason S(Rn) is called a countably normed
space.

Proposition 1.8. For u ∈ S(Rn), set

(1.12) ‖u‖(k) = ‖〈x〉ku‖Ck
and define

(1.13) d(u, v) =
∞∑
k=0

2−k
‖u− v‖(k)

1 + ‖u− v‖(k)

,

then d is a distance function in S(Rn) with respect to which it is a
complete metric space.

2Laurent Schwartz – this one with a ‘t’.
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Proof. The series in (1.13) certainly converges, since

‖u− v‖(k)

1 + ‖u− v‖(k)

≤ 1.

The first two conditions on a metric are clear,

d(u, v) = 0⇒ ‖u− v‖C0 = 0⇒ u = v,

and symmetry is immediate. The triangle inequality is perhaps more
mysterious!

Certainly it is enough to show that

(1.14) d̃(u, v) =
‖u− v‖

1 + ‖u− v‖
is a metric on any normed space, since then we may sum over k. Thus
we consider

‖u− v‖
1 + ‖u− v‖

+
‖v − w‖

1 + ‖v − w‖

=
‖u− v‖(1 + ‖v − w‖) + ‖v − w‖(1 + ‖u− v‖)

(1 + ‖u− v‖)(1 + ‖v − w‖)
.

Comparing this to d̃(v, w) we must show that

(1 + ‖u− v‖)(1 + ‖v − w‖)‖u− w‖
≤ (‖u− v‖(1 + ‖v − w‖) + ‖v − w‖(1 + ‖u− v‖))(1 + ‖u− w‖).

Starting from the LHS and using the triangle inequality,

LHS ≤ ‖u− w‖+ (‖u− v‖+ ‖v − w‖+ ‖u− v‖‖v − w‖)‖u− w‖
≤ (‖u− v‖+ ‖v − w‖+ ‖u− v‖‖v − w‖)(1 + ‖u− w‖)

≤ RHS.

Thus, d is a metric.
Suppose un is a Cauchy sequence. Thus, d(un, um)→ 0 as n,m→

∞. In particular, given

ε > 0 ∃ N s.t. n,m > N implies

d(un, um) < ε2−k ∀ n,m > N.

The terms in (1.13) are all positive, so this implies

‖un − um‖(k)

1 + ‖un − um‖(k)

< ε ∀ n,m > N.

If ε < 1/2 this in turn implies that

‖un − um‖(k) < 2ε,
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so the sequence is Cauchy in 〈x〉−kCk0 (Rn) for each k. From the com-
pleteness of these spaces it follows that un → u in 〈x〉−kCk0 (Rn)j for
each k. Given ε > 0 choose k so large that 2−k < ε/2. Then ∃ N s.t.
n > N

⇒ ‖u− un‖(j) < ε/2 n > N, j ≤ k.

Hence

d(un, u) =
∑
j≤k

2−j
‖u− un‖(j)

1 + ‖u− un‖(j)

+
∑
j>k

2−j
‖u− un‖(j)

1 + ‖u− un‖(j)

≤ ε/4 + 2−k < ε.

This un → u in S(Rn). �

As well as the Schwartz space, S(Rn), of functions of rapid decrease
with all derivatives, there is a smaller ‘standard’ space of test functions,
namely

(1.15) C∞c (Rn) = {u ∈ S(Rn); supp(u) b Rn} ,
the space of smooth functions of compact support. Again, it is not
quite obvious that this has any non-trivial elements, but it does as
we shall see. If we fix a compact subset of Rn and look at functions
with support in that set, for instance the closed ball of radius R > 0,
then we get a closed subspace of S(Rn), hence a complete metric space.
One ‘problem’ with C∞c (Rn) is that it does not have a complete metric
topology which restricts to this topology on the subsets. Rather we
must use an inductive limit procedure to get a decent topology.

Just to show that this is not really hard, I will discuss it briefly
here, but it is not used in the sequel. In particular I will not do this
in the lectures themselves. By definition our space C∞c (Rn) (denoted
traditionally as D(Rn)) is a countable union of subspaces
(1.16)

C∞c (Rn) =
⋃
n∈N

Ċ∞c (B(n)), Ċ∞c (B(n)) = {u ∈ S(Rn);u = 0 in |x| > n}.

Consider
(1.17)
T = {U ⊂ C∞c (Rn);U ∩ Ċ∞c (B(n)) is open in Ċ∞(B(n)) for each n}.

This is a topology on C∞c (Rn) – contains the empty set and the whole
space and is closed under finite intersections and arbitrary unions –
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simply because the same is true for the open sets in Ċ∞(B(n)) for each
n. This is in fact the inductive limit topology. One obvious question
is:- what does it mean for a linear functional u : C∞c (Rn) −→ C to be
continuous? This just means that u−1(O) is open for each open set in C.
Directly from the definition this in turn means that u−1(O)∩Ċ∞(B(n))
should be open in Ċ∞(B(n)) for each n. This however just means that,
restricted to each of these subspaces u is continuous. If you now go
forwards to Lemma 2.3 you can see what this means; see Problem 74.

Of course there is a lot more to be said about these spaces; you can
find plenty of it in the references.

2. Tempered distributions

A good first reference for distributions is [2], [5] gives a more ex-
haustive treatment.

The complete metric topology on S(Rn) is described above. Next I
want to try to convice you that elements of its dual space S ′(Rn), have
enough of the properties of functions that we can work with them as
‘generalized functions’.

First let me develop some notation. A differentiable function ϕ :
Rn → C has partial derivatives which we have denoted ∂ϕ/∂xj : Rn →
C. For reasons that will become clear later, we put a

√
−1 into the

definition and write

(2.1) Djϕ =
1

i

∂ϕ

∂xj
.

We say ϕ is once continuously differentiable if each of these Djϕ is
continuous. Then we defined k times continuous differentiability in-
ductively by saying that ϕ and the Djϕ are (k− 1)-times continuously
differentiable. For k = 2 this means that

DjDkϕ are continuous for j, k = 1, · · · , n .
Now, recall that, if continuous, these second derivatives are symmetric:

(2.2) DjDkϕ = DkDjϕ .

This means we can use a compact notation for higher derivatives. Put
N0 = {0, 1, . . .}; we call an element α ∈ Nn

0 a ‘multi-index’ and if ϕ is
at least k times continuously differentiable, we set3

(2.3) Dαϕ =
1

i|α|
∂α1

∂x1

· · · ∂
αn

∂xn
ϕ whenever |α| = α1 +α2 + · · ·+αn ≤ k.

3Periodically there is the possibility of confusion between the two meanings of
|α| but it seldom arises.
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In fact we will use a closely related notation of powers of a variable.
Namely if α is a multi-index we shall also write

(2.4) xα = xα1
1 x

α2
2 . . . xαnn .

Now we have defined the spaces.

(2.5) Ck0 (Rn) =
{
ϕ : Rn → C ; Dαϕ ∈ C0

0(Rn) ∀ |α| ≤ k
}
.

Notice the convention is that Dαϕ is asserted to exist if it is required
to be continuous! Using 〈x〉 = (1 + |x|2)

1
2 we defined

(2.6) 〈x〉−kCk0 (Rn) =
{
ϕ : Rn → C ; 〈x〉kϕ ∈ Ck0 (Rn)

}
,

and then our space of test functions is

S(Rn) =
⋂
k

〈x〉−kCk0 (Rn) .

Thus,

(2.7) ϕ ∈ S(Rn)⇔ Dα(〈x〉kϕ) ∈ C0
0(Rn) ∀ |α| ≤ k and all k .

Lemma 2.1. The condition ϕ ∈ S(Rn) can be written

〈x〉kDαϕ ∈ C0
0(Rn) ∀ |α| ≤ k , ∀ k .

Proof. We first check that

ϕ ∈ C0
0(Rn) , Dj(〈x〉ϕ) ∈ C0

0(Rn) , j = 1, · · · , n
⇔ ϕ ∈ C0

0(Rn) , 〈x〉Djϕ ∈ C0
0(Rn) , j = 1, · · · , n .

Since

Dj〈x〉ϕ = 〈x〉Djϕ+ (Dj〈x〉)ϕ
and Dj〈x〉 = 1

i
xj〈x〉−1 is a bounded continuous function, this is clear.

Then consider the same thing for a larger k:

Dα〈x〉pϕ ∈ C0
0(Rn) ∀ |α| = p , 0 ≤ p ≤ k(2.8)

⇔ 〈x〉pDαϕ ∈ C0
0(Rn) ∀ |α| = p , 0 ≤ p ≤ k .

�

I leave you to check this as Problem 2.1.

Corollary 2.2. For any k ∈ N the norms

‖〈x〉kϕ‖Ck and
∑
|α|≤k,
|β|≤k

‖xαDβ
xϕ‖∞

are equivalent.
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Proof. Any reasonable proof of (2.2) shows that the norms

‖〈x〉kϕ‖Ck and
∑
|β|≤k

‖〈x〉kDβϕ‖∞

are equivalent. Since there are positive constants such that

C1

1 +
∑
|α|≤k

|xα|

 ≤ 〈x〉k ≤ C2

1 +
∑
|α|≤k

|xα|


the equivalent of the norms follows.

�

Proposition 2.3. A linear functional u : S(Rn)→ C is continuous
if and only if there exist C, k such that

|u(ϕ)| ≤ C
∑
|α|≤k,
|β|≤k

sup
Rn

∣∣xαDβ
xϕ
∣∣ .

Proof. This is just the equivalence of the norms, since we showed
that u ∈ S ′(Rn) if and only if

|u(ϕ)| ≤ C‖〈x〉kϕ‖Ck
for some k.

�

Lemma 2.4. A linear map

T : S(Rn)→ S(Rn)

is continuous if and only if for each k there exist C and j such that if
|α| ≤ k and |β| ≤ k

(2.9) sup
∣∣xαDβTϕ

∣∣ ≤ C
∑

|α′|≤j, |β′|≤j

sup
Rn

∣∣∣xα′Dβ′ϕ
∣∣∣ ∀ ϕ ∈ S(Rn).

Proof. This is Problem 2.2. �

All this messing about with norms shows that

xj : S(Rn)→ S(Rn) and Dj : S(Rn)→ S(Rn)

are continuous.
So now we have some idea of what u ∈ S ′(Rn) means. Let’s notice

that u ∈ S ′(Rn) implies

xju ∈ S ′(Rn) ∀ j = 1, · · · , n(2.10)

Dju ∈ S ′(Rn) ∀ j = 1, · · · , n(2.11)

ϕu ∈ S ′(Rn) ∀ ϕ ∈ S(Rn)(2.12)
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where we have to define these things in a reasonable way. Remem-
ber that u ∈ S ′(Rn) is “supposed” to be like an integral against a
“generalized function”

(2.13) u(ψ) =

∫
Rn
u(x)ψ(x) dx ∀ ψ ∈ S(Rn).

Since it would be true if u were a function we define

(2.14) xju(ψ) = u(xjψ) ∀ ψ ∈ S(Rn).

Then we check that xju ∈ S ′(Rn):

|xju(ψ)| = |u(xjψ)|

≤ C
∑

|α|≤k, |β|≤k

sup
Rn

∣∣xαDβ(xjψ)
∣∣

≤ C ′
∑

|α|≤k+1, |β|≤k

sup
Rn

∣∣xαDβψ
∣∣ .

Similarly we can define the partial derivatives by using the standard
integration by parts formula

(2.15)

∫
Rn

(Dju)(x)ϕ(x) dx = −
∫
Rn
u(x)(Djϕ(x)) dx

if u ∈ C1
0(Rn). Thus if u ∈ S ′(Rn) again we define

Dju(ψ) = −u(Djψ) ∀ ψ ∈ S(Rn).

Then it is clear that Dju ∈ S ′(Rn).
Iterating these definition we find that Dα, for any multi-index α,

defines a linear map

(2.16) Dα : S ′(Rn)→ S ′(Rn) .

In general a linear differential operator with constant coefficients is a
sum of such “monomials”. For example Laplace’s operator is

∆ = − ∂2

∂x2
1

− ∂2

∂x2
2

− · · · − ∂2

∂x2
n

= D2
1 +D2

2 + · · ·+D2
n .

We will be interested in trying to solve differential equations such as

∆u = f ∈ S ′(Rn) .

We can also multiply u ∈ S ′(Rn) by ϕ ∈ S(Rn), simply defining

(2.17) ϕu(ψ) = u(ϕψ) ∀ ψ ∈ S(Rn).
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For this to make sense it suffices to check that

(2.18)
∑
|α|≤k,
|β|≤k

sup
Rn

∣∣xαDβ(ϕψ)
∣∣ ≤ C

∑
|α|≤k,
|β|≤k

sup
Rn

∣∣xαDβψ
∣∣ .

This follows easily from Leibniz’ formula.
Now, to start thinking of u ∈ S ′(Rn) as a generalized function we

first define its support. Recall that

(2.19) supp(ψ) = clos {x ∈ Rn;ψ(x) 6= 0} .
We can write this in another ‘weak’ way which is easier to generalize.
Namely

(2.20) p /∈ supp(u)⇔ ∃ϕ ∈ S(Rn) , ϕ(p) 6= 0 , ϕu = 0 .

In fact this definition makes sense for any u ∈ S ′(Rn).

Lemma 2.5. The set supp(u) defined by (2.20) is a closed subset of
Rn and reduces to (2.19) if u ∈ S(Rn).

Proof. The set defined by (2.20) is closed, since

(2.21) supp(u){ = {p ∈ Rn; ∃ ϕ ∈ S(Rn), ϕ(p) 6= 0, ϕu = 0}
is clearly open — the same ϕ works for nearby points. If ψ ∈ S(Rn)
we define uψ ∈ S ′(Rn), which we will again identify with ψ, by

(2.22) uψ(ϕ) =

∫
ϕ(x)ψ(x) dx .

Obviously uψ = 0 =⇒ ψ = 0, simply set ϕ = ψ in (2.22). Thus the
map

(2.23) S(Rn) 3 ψ 7−→ uψ ∈ S ′(Rn)

is injective. We want to show that

(2.24) supp(uψ) = supp(ψ)

on the left given by (2.20) and on the right by (2.19). We show first
that

supp(uψ) ⊂ supp(ψ).

Thus, we need to see that p /∈ supp(ψ) ⇒ p /∈ supp(uψ). The first
condition is that ψ(x) = 0 in a neighbourhood, U of p, hence there
is a C∞ function ϕ with support in U and ϕ(p) 6= 0. Then ϕψ ≡ 0.
Conversely suppose p /∈ supp(uψ). Then there exists ϕ ∈ S(Rn) with
ϕ(p) 6= 0 and ϕuψ = 0, i.e., ϕuψ(η) = 0 ∀ η ∈ S(Rn). By the injectivity
of S(Rn) ↪→ S ′(Rn) this means ϕψ = 0, so ψ ≡ 0 in a neighborhood of
p and p /∈ supp(ψ). �



3. CONVOLUTION AND DENSITY 55

Consider the simplest examples of distribution which are not func-
tions, namely those with support at a given point p. The obvious one
is the Dirac delta ‘function’

(2.25) δp(ϕ) = ϕ(p) ∀ ϕ ∈ S(Rn) .

We can make many more, because Dα is local

(2.26) supp(Dαu) ⊂ supp(u) ∀ u ∈ S ′(Rn) .

Indeed, p /∈ supp(u) ⇒ ∃ ϕ ∈ S(Rn), ϕu ≡ 0, ϕ(p) 6= 0. Thus each of
the distributions Dαδp also has support contained in {p}. In fact none
of them vanish, and they are all linearly independent.

3. Convolution and density

We have defined an inclusion map
(3.1)

S(Rn) 3 ϕ 7−→ uϕ ∈ S ′(Rn), uϕ(ψ) =

∫
Rn
ϕ(x)ψ(x) dx ∀ ψ ∈ S(Rn).

This allows us to ‘think of’ S(Rn) as a subspace of S ′(Rn); that is we
habitually identify uϕ with ϕ. We can do this because we know (3.1)
to be injective. We can extend the map (3.1) to include bigger spaces

(3.2)

C0
0(Rn) 3 ϕ 7−→ uϕ ∈ S ′(Rn)

Lp(Rn) 3 ϕ 7−→ uϕ ∈ S ′(Rn)

M(Rn) 3 µ 7−→ uµ ∈ S ′(Rn)

uµ(ψ) =

∫
Rn
ψ dµ ,

but we need to know that these maps are injective before we can forget
about them.

We can see this using convolution. This is a sort of ‘product’ of
functions. To begin with, suppose v ∈ C0

0(Rn) and ψ ∈ S(Rn). We
define a new function by ‘averaging v with respect to ψ:’

(3.3) v ∗ ψ(x) =

∫
Rn
v(x− y)ψ(y) dy .

The integral converges by dominated convergence, namely ψ(y) is in-
tegrable and v is bounded,

|v(x− y)ψ(y)| ≤ ‖v‖C00 |ψ(y)| .
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We can use the same sort of estimates to show that v ∗ψ is continuous.
Fix x ∈ Rn,

(3.4) v ∗ ψ(x+ x′)− v ∗ ψ(x)

=

∫
(v(x+ x′ − y)− v(x− y))ψ(y) dy .

To see that this is small for x′ small, we split the integral into two
pieces. Since ψ is very small near infinity, given ε > 0 we can choose
R so large that

(3.5) ‖v‖∞ ·
∫
|y]|≥R

|ψ(y)| dy ≤ ε/4 .

The set |y| ≤ R is compact and if |x| ≤ R′, |x′| ≤ 1 then |x+ x′ − y| ≤
R + R′ + 1. A continuous function is uniformly continuous on any
compact set, so we can chose δ > 0 such that

(3.6) sup
|x′|<δ
|y|≤R

|v(x+ x′ − y)− v(x− y)| ·
∫
|y|≤R

|ψ(y)| dy < ε/2 .

Combining (3.5) and (3.6) we conclude that v∗ψ is continuous. Finally,
we conclude that

(3.7) v ∈ C0
0(Rn)⇒ v ∗ ψ ∈ C0

0(Rn) .

For this we need to show that v ∗ ψ is small at infinity, which follows
from the fact that v is small at infinity. Namely given ε > 0 there exists
R > 0 such that |v(y)| ≤ ε if |y| ≥ R. Divide the integral defining the
convolution into two

|v ∗ ψ(x)| ≤
∫
|y|>R

u(y)ψ(x− y)dy +

∫
y<R

|u(y)ψ(x− y)|dy

≤ ε/2‖ψ‖∞ + ‖u‖∞ sup
B(x,R)

|ψ|.

Since ψ ∈ S(Rn) the last constant tends to 0 as |x| → ∞.
We can do much better than this! Assuming |x′| ≤ 1 we can use

Taylor’s formula with remainder to write

(3.8) ψ(z + x′)− ψ(z) =

∫ ′
0

d

dt
ψ(z + tx′) dt =

n∑
j=1

xj · ψ̃j(z, x′) .

As Problem 23 I ask you to check carefully that

(3.9) ψj(z;x′) ∈ S(Rn) depends continuously on x′ in |x′| ≤ 1 .
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Going back to (3.3))we can use the translation and reflection-invariance
of Lebesgue measure to rewrite the integral (by changing variable) as

(3.10) v ∗ ψ(x) =

∫
Rn
v(y)ψ(x− y) dy .

This reverses the role of v and ψ and shows that if both v and ψ are in
S(Rn) then v ∗ ψ = ψ ∗ v.

Using this formula on (3.4) we find

(3.11)

v ∗ ψ(x+ x′)− v ∗ ψ(x) =

∫
v(y)(ψ(x+ x′ − y)− ψ(x− y)) dy

=
n∑
j=1

xj

∫
Rn
v(y)ψ̃j(x− y, x′) dy =

n∑
j=1

xj(v ∗ ψj(·;x′)(x) .

From (3.9) and what we have already shown, v ∗ ψ(·;x′) is continuous
in both variables, and is in C0

0(Rn) in the first. Thus

(3.12) v ∈ C0
0(Rn) , ψ ∈ S(Rn)⇒ v ∗ ψ ∈ C1

0(Rn) .

In fact we also see that

(3.13)
∂

∂xj
v ∗ ψ = v ∗ ∂ψ

∂xj
.

Thus v ∗ ψ inherits its regularity from ψ.

Proposition 3.1. If v ∈ C0
0(Rn) and ψ ∈ S(Rn) then

(3.14) v ∗ ψ ∈ C∞0 (Rn) =
⋂
k≥0

Ck0 (Rn) .

Proof. This follows from (3.12), (3.13) and induction. �

Now, let us make a more special choice of ψ. We have shown the
existence of

(3.15) ϕ ∈ C∞c (Rn) , ϕ ≥ 0 , supp(ϕ) ⊂ {|x| ≤ 1} .
We can also assume

∫
Rn ϕdx = 1, by multiplying by a positive constant.

Now consider

(3.16) ϕt(x) = t−nϕ
(x
t

)
1 ≥ t > 0 .

This has all the same properties, except that

(3.17) suppϕt ⊂ {|x| ≤ t} ,
∫
ϕt dx = 1 .

Proposition 3.2. If v ∈ C0
0(Rn) then as t→ 0, vt = v ∗ϕt → v in

C0
0(Rn).
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Proof. using (3.17) we can write the difference as

(3.18) |vt(x)− v(x)| = |
∫
Rn

(v(x− y)− v(x))ϕt(y) dy|

≤ sup
|y|≤t
|v(x− y)− v(x)| → 0.

Here we have used the fact that ϕt ≥ 0 has support in |y| ≤ t and has
integral 1. Thus vt → v uniformly on any set on which v is uniformly
continuous, namel Rn! �

Corollary 3.3. Ck0 (Rn) is dense in Cp0(Rn) for any k ≥ p.

Proposition 3.4. S(Rn) is dense in Ck0 (Rn) for any k ≥ 0.

Proof. Take k = 0 first. The subspace C0
c (Rn) is dense in C0

0(Rn),
by cutting off outside a large ball. If v ∈ C0

c (Rn) has support in
{|x| ≤ R} then

v ∗ ϕt ∈ C∞c (Rn) ⊂ S(Rn)

has support in {|x| ≤ R + 1}. Since v ∗ ϕt → v the result follows for
k = 0.

For k ≥ 1 the same argument works, since Dα(v ∗ ϕt) = (DαV ) ∗
ϕt. �

Corollary 3.5. The map from finite Radon measures

(3.19) Mfin(Rn) 3 µ 7−→ uµ ∈ S ′(Rn)

is injective.

Now, we want the same result for L2(Rn) (and maybe for Lp(Rn),
1 ≤ p < ∞). I leave the measure-theoretic part of the argument to
you.

Proposition 3.6. Elements of L2(Rn) are “continuous in the mean”
i.e.,

(3.20) lim
|t|→0

∫
Rn
|u(x+ t)− u(x)|2 dx = 0 .

This is Problem 24.
Using this we conclude that

(3.21) S(Rn) ↪→ L2(Rn) is dense

as before. First observe that the space of L2 functions of compact
support is dense in L2(Rn), since

lim
R→∞

∫
|x|≥R

|u(x)|2 dx = 0 ∀ u ∈ L2(Rn) .
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Then look back at the discussion of v ∗ ϕ, now v is replaced by u ∈
L2
c(Rn). The compactness of the support means that u ∈ L1(Rn) so in

(3.22) u ∗ ϕ(x) =

∫
Rn
u(x− y)ϕ(y)dy

the integral is absolutely convergent. Moreover

|u ∗ ϕ(x+ x′)− u ∗ ϕ(x)|

=

∣∣∣∣∫ u(y)(ϕ(x+ x′ − y)− ϕ(x− y)) dy

∣∣∣∣
≤ C‖u‖ sup

|y|≤R
|ϕ(x+ x′ − y)− ϕ(x− y)| → 0

when {|x| ≤ R} large enough. Thus u ∗ ϕ is continuous and the same
argument as before shows that

u ∗ ϕt ∈ S(Rn) .

Now to see that u ∗ ϕt → u, assuming u has compact support (or not)
we estimate the integral

|u ∗ ϕt(x)− u(x)| =
∣∣∣∣∫ (u(x− y)− u(x))ϕt(y) dy

∣∣∣∣
≤
∫
|u(x− y)− u(x)|ϕt(y) dy .

Using the same argument twice∫
|u ∗ ϕt(x)− u(x)|2 dx

≤
∫∫∫

|u(x− y)− u(x)|ϕt(y) |u(x− y′)− u(x)|ϕt(y′) dx dy dy′

≤
(∫
|u(x− y)− u(x)|2 ϕt(y)ϕt(y

′)dx dy dy′
)

≤ sup
|y|≤t

∫
|u(x− y)− u(x)|2 dx .

Note that at the second step here I have used Schwarz’s inequality with
the integrand written as the product

|u(x− y)− u(x)|ϕ1/2
t (y)ϕ

1/2
t (y′) · |u(x− y′)− u(x)|ϕ1/2

t (y)ϕ
1/2
t (y′) .

Thus we now know that

L2(Rn) ↪→ S ′(Rn) is injective.

This means that all our usual spaces of functions ‘sit inside’ S ′(Rn).
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Finally we can use convolution with ϕt to show the existence of
smooth partitions of unity. If K b U ⊂ Rn is a compact set in an
open set then we have shown the existence of ξ ∈ C0

c (Rn), with ξ = 1
in some neighborhood of K and ξ = 1 in some neighborhood of K and
supp(ξ) b U .

Then consider ξ ∗ ϕt for t small. In fact

supp(ξ ∗ ϕt) ⊂ {p ∈ Rn ; dist(p, supp ξ) ≤ 2t}
and similarly, 0 ≤ ξ ∗ ϕt ≤ 1 and

ξ ∗ ϕt = 1 at p if ξ = 1 on B(p, 2t) .

Using this we get:

Proposition 3.7. If Ua ⊂ Rn are open for a ∈ A and K b⋃
a∈A Ua then there exist finitely many ϕi ∈ C∞c (Rn), with 0 ≤ ϕi ≤ 1,

supp(ϕi) ⊂ Uai such that
∑
i

ϕi = 1 in a neighbourhood of K.

Proof. By the compactness of K we may choose a finite open
subcover. Using Lemma 15.7 we may choose a continuous partition,
φ′i, of unity subordinate to this cover. Using the convolution argument
above we can replace φ′i by φ′i ∗ ϕt for t > 0. If t is sufficiently small
then this is again a partition of unity subordinate to the cover, but
now smooth. �

Next we can make a simple ‘cut off argument’ to show

Lemma 3.8. The space C∞c (Rn) of C∞ functions of compact support
is dense in S(Rn).

Proof. Choose ϕ ∈ C∞c (Rn) with ϕ(x) = 1 in |x| ≤ 1. Then given
ψ ∈ S(Rn) consider the sequence

ψn(x) = ϕ(x/n)ψ(x) .

Clearly ψn = ψ on |x| ≤ n, so if it converges in S(Rn) it must converge
to ψ. Suppose m ≥ n then by Leibniz’s formula4

Dα
x (ψn(x)− ψm(x))

=
∑
β≤α

(
α

β

)
Dβ
x

(
ϕ(
x

n
)− ϕ(

x

m
)
)
·Dα−β

x ψ(x) .

All derivatives of ϕ(x/n) are bounded, independent of n and ψn = ψm
in |x| ≤ n so for any p

|Dα
x (ψn(x)− ψm(x))| ≤

{
0 |x| ≤ n

Cα,p〈x〉−2p |x| ≥ n
.

4Problem 25.
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Hence ψn is Cauchy in S(Rn). �

Thus every element of S ′(Rn) is determined by its restriction to
C∞c (Rn). The support of a tempered distribution was defined above to
be

(3.23) supp(u) = {x ∈ Rn; ∃ ϕ ∈ S(Rn) , ϕ(x) 6= 0 , ϕu = 0}{ .
Using the preceding lemma and the construction of smooth partitions
of unity we find

Proposition 3.9. f u ∈ S ′(Rn) and supp(u) = ∅ then u = 0.

Proof. From (3.23), if ψ ∈ S(Rn), supp(ψu) ⊂ supp(u). If x 3
supp(u) then, by definition, ϕu = 0 for some ϕ ∈ S(Rn) with ϕ(x) 6= 0.
Thus ϕ 6= 0 on B(x, ε) for ε > 0 sufficiently small. If ψ ∈ C∞c (Rn) has

support in B(x, ε) then ψu = ψ̃ϕu = 0, where ψ̃ ∈ C∞c (Rn):

ψ̃ =

{
ψ/ϕ in B(x, ε)

0 elsewhere .

Thus, given K b Rn we can find ϕj ∈ C∞c (Rn), supported in such balls,
so that

∑
j ϕj ≡ 1 on K but ϕju = 0. For given µ ∈ C∞c (Rn) apply

this to supp(µ). Then

µ =
∑
j

ϕjµ⇒ u(µ) =
∑
j

(φju)(µ) = 0 .

Thus u = 0 on C∞c (Rn), so u = 0. �

The linear space of distributions of compact support will be denoted
C−∞c (Rn); it is often written E ′(Rn).

Now let us give a characterization of the ‘delta function’

δ(ϕ) = ϕ(0) ∀ ϕ ∈ S(Rn) ,

or at least the one-dimensional subspace of S ′(Rn) it spans. This is
based on the simple observation that (xjϕ)(0) = 0 if ϕ ∈ S(Rn)!

Proposition 3.10. If u ∈ S ′(Rn) satisfies xju = 0, j = 1, · · · , n
then u = cδ.

Proof. The main work is in characterizing the null space of δ as
a linear functional, namely in showing that

(3.24) H = {ϕ ∈ S(Rn); ϕ(0) = 0}
can also be written as

(3.25) H =

{
ϕ ∈ S(Rn); ϕ =

n∑
j=1

xjψj , ϕj ∈ S(Rn)

}
.
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Clearly the right side of (3.25) is contained in the left. To see the
converse, suppose first that

(3.26) ϕ ∈ S(Rn) , ϕ = 0 in |x| < 1 .

Then define

ψ =

{
0 |x| < 1

ϕ/ |x|2 |x| ≥ 1 .

All the derivatives of 1/ |x|2 are bounded in |x| ≥ 1, so from Leibniz’s
formula it follows that ψ ∈ S(Rn). Since

ϕ =
∑
j

xj(xjψ)

this shows that ϕ of the form (3.26) is in the right side of (3.25). In
general suppose ϕ ∈ S(Rn). Then

(3.27)

ϕ(x)− ϕ(0) =

∫ t

0

d

dt
ϕ(tx) dt

=
n∑
j=1

xj

∫ t

0

∂ϕ

∂xj
(tx) dt .

Certainly these integrals are C∞, but they may not decay rapidly at
infinity. However, choose µ ∈ C∞c (Rn) with µ = 1 in |x| ≤ 1. Then
(3.27) becomes, if ϕ(0) = 0,

ϕ = µϕ+ (1− µ)ϕ

=
n∑
j=1

xjψj + (1− µ)ϕ , ψj = µ

∫ t

0

∂ϕ

∂xj
(tx) dt ∈ S(Rn) .

Since (1− µ)ϕ is of the form (3.26), this proves (3.25).
Our assumption on u is that xju = 0, thus

u(ϕ) = 0 ∀ ϕ ∈ H

by (3.25). Choosing µ as above, a general ϕ ∈ S(Rn) can be written

ϕ = ϕ(0) · µ+ ϕ′ , ϕ′ ∈ H .

Then

u(ϕ) = ϕ(0)u(µ)⇒ u = cδ , c = u(µ) .

�
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This result is quite powerful, as we shall soon see. The Fourier
transform of an element ϕ ∈ S(Rn) is5

(3.28) ϕ̂(ξ) =

∫
e−ix·ξϕ(x) dx , ξ ∈ Rn .

The integral certainly converges, since |ϕ| ≤ C〈x〉−n−1. In fact it fol-
lows easily that ϕ̂ is continuous, since

|ϕ̂(ξ)− ϕ̂(ξ′)| ∈
∫ ∣∣∣eix−ξ − e−x·ξ′∣∣∣ |ϕ| dx

→ 0 as ξ′ → ξ .

In fact

Proposition 3.11. Fourier transformation, (3.28), defines a con-
tinuous linear map

(3.29) F : S(Rn)→ S(Rn) , Fϕ = ϕ̂ .

Proof. Differentiating under the integral6 sign shows that

∂ξj ϕ̂(ξ) = −i
∫
e−ix·ξxjϕ(x) dx .

Since the integral on the right is absolutely convergent that shows that
(remember the i’s)

(3.30) Dξj ϕ̂ = −x̂jϕ , ∀ ϕ ∈ S(Rn) .

Similarly, if we multiply by ξj and observe that ξje
−ix·ξ = i ∂

∂xj
e−ix·ξ

then integration by parts shows

ξjϕ̂ = i

∫
(
∂

∂xj
e−ix·ξ)ϕ(x) dx(3.31)

= −i
∫
e−ix·ξ

∂ϕ

∂xj
dx

D̂jϕ = ξjϕ̂ , ∀ ϕ ∈ S(Rn) .

Since xjϕ, Djϕ ∈ S(Rn) these results can be iterated, showing that

(3.32) ξαDβ
ξ ϕ̂ = F

(
(−1)|β|Dα

xx
βϕ
)
.

Thus
∣∣∣ξαDβ

ξ ϕ̂
∣∣∣ ≤ Cαβ sup

∣∣〈x〉+n+1Dα
xx

βϕ
∣∣ ≤ C‖〈x〉n+1+|β|ϕ‖C|α| , which

shows that F is continuous as a map (3.32).
�

5Normalizations vary, but it doesn’t matter much.
6See [6]
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Suppose ϕ ∈ S(Rn). Since ϕ̂ ∈ S(Rn) we can consider the distri-
bution u ∈ S ′(Rn)

(3.33) u(ϕ) =

∫
Rn
ϕ̂(ξ) dξ .

The continuity of u follows from the fact that integration is continuous
and (3.29). Now observe that

u(xjϕ) =

∫
Rn
x̂jϕ(ξ) dξ

= −
∫
Rn
Dξj ϕ̂ dξ = 0

where we use (3.30). Applying Proposition 3.10 we conclude that u =
cδ for some (universal) constant c. By definition this means

(3.34)

∫
Rn
ϕ̂(ξ) dξ = cϕ(0) .

So what is the constant? To find it we need to work out an example.
The simplest one is

ϕ = exp(− |x|2 /2) .

Lemma 3.12. The Fourier transform of the Gaussian exp(− |x|2 /2)
is the Gaussian (2π)n/2 exp(− |ξ|2 /2).

Proof. There are two obvious methods — one uses complex anal-
ysis (Cauchy’s theorem) the other, which I shall follow, uses the unique-
ness of solutions to ordinary differential equations.

First observe that exp(− |x|2 /2) =
∏

j exp(−x2
j/2). Thus7

ϕ̂(ξ) =
n∏
j=1

ψ̂(ξj) , ψ(x) = e−x
2/2 ,

being a function of one variable. Now ψ satisfies the differential equa-
tion

(∂x + x)ψ = 0 ,

and is the only solution of this equation up to a constant multiple. By
(3.30) and (3.31) its Fourier transform satisfies

∂̂xψ + x̂ψ = iξψ̂ + i
d

dξ
ϕ̂ = 0 .

7Really by Fubini’s theorem, but here one can use Riemann integrals.
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This is the same equation, but in the ξ variable. Thus ψ̂ = ce−|ξ|
2/2.

Again we need to find the constant. However,

ψ̂(0) = c =

∫
e−x

2/2 dx = (2π)1/2

by the standard use of polar coordinates:

c2 =

∫
Rn
e−(x2+y2)/2 dx dy =

∫ ∞
0

∫ 2π

0

e−r
2/2r dr dθ = 2π .

This proves the lemma.
�

Thus we have shown that for any ϕ ∈ S(Rn)

(3.35)

∫
Rn
ϕ̂(ξ) dξ = (2π)nϕ(0) .

Since this is true for ϕ = exp(− |x|2 /2). The identity allows us to
invert the Fourier transform.

4. Fourier inversion

It is shown above that the Fourier transform satisfies the identity

(4.1) ϕ(0) = (2π)−n
∫
Rn
ϕ̂(ξ) dξ ∀ ϕ ∈ S(Rn) .

If y ∈ Rn and ϕ ∈ S(Rn) set ψ(x) = ϕ(x + y). The translation-
invariance of Lebesgue measure shows that

ψ̂(ξ) =

∫
e−ix·ξϕ(x+ y) dx

= eiy·ξϕ̂(ξ) .

Applied to ψ the inversion formula (4.1) becomes

ϕ(y) = ψ(0) = (2π)−n
∫
ψ̂(ξ) dξ(4.2)

= (2π)−n
∫
Rn
eiy·ξϕ̂(ξ) dξ .

Theorem 4.1. Fourier transform F : S(Rn) → S(Rn) is an iso-
morphism with inverse

(4.3) G : S(Rn)→ S(Rn) , Gψ(y) = (2π)−n
∫
eiy·ξψ(ξ) dξ .
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Proof. The identity (4.2) shows that F is 1 − 1, i.e., injective,
since we can remove ϕ from ϕ̂. Moreover,

(4.4) Gψ(y) = (2π)−nFψ(−y)

So G is also a continuous linear map, G : S(Rn) → S(Rn). Indeed
the argument above shows that G ◦ F = Id and the same argument,
with some changes of sign, shows that F · G = Id. Thus F and G are
isomorphisms.

�

Lemma 4.2. For all ϕ, ψ ∈ S(Rn), Paseval’s identity holds:

(4.5)

∫
Rn
ϕψ dx = (2π)−n

∫
Rn
ϕ̂ψ̂ dξ .

Proof. Using the inversion formula on ϕ,∫
ϕψ dx = (2π)−n

∫ (
eix·ξϕ̂(ξ) dξ

)
ψ(x) dx

= (2π)−n
∫
ϕ̂(ξ)

∫
e−ix·ξψ(x) dx dξ

= (2π)−n
∫
ϕ̂(ξ)ϕ̂(ξ) dξ .

Here the integrals are absolutely convergent, justifying the exchange of
orders.

�

Proposition 4.3. Fourier transform extends to an isomorphism

(4.6) F : L2(Rn)→ L2(Rn) .

Proof. Setting ϕ = ψ in (4.5) shows that

(4.7) ‖Fϕ‖L2 = (2π)n/2‖ϕ‖L2 .

In particular this proves, given the known density of S(Rn) in L2(Rn),
that F is an isomorphism, with inverse G, as in (4.6).

�

For any m ∈ R
〈x〉mL2(Rn) =

{
u ∈ S ′(Rn) ; 〈x〉−mû ∈ L2(Rn)

}
is a well-defined subspace. We define the Sobolev spaces on Rn by, for
m ≥ 0

Hm(Rn) =
{
u ∈ L2(Rn) ; û = Fu ∈ 〈ξ〉−mL2(Rn)

}
.(4.8)

Thus Hm(Rn) ⊂ Hm′(Rn) if m ≥ m′ , H0(Rn) = L2(Rn) .
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Lemma 4.4. If m ∈ N is an integer, then

(4.9) u ∈ Hm(Rn)⇔ Dαu ∈ L2(Rn) ∀ |α| ≤ m.

Proof. By definition, u ∈ Hm(Rn) implies that 〈ξ〉−mû ∈ L2(Rn).

Since D̂αu = ξαû this certainly implies that Dαu ∈ L2(Rn) for |α| ≤ m.
Conversely if Dαu ∈ L2(Rn) for all |α| ≤ m then ξαû ∈ L2(Rn) for all
|α| ≤ m and since

〈ξ〉m ≤ Cm
∑
|α|≤m

|ξα| .

this in turn implies that 〈ξ〉mû ∈ L2(Rn).
�

Now that we have considered the Fourier transform of Schwartz
test functions we can use the usual method, of duality, to extend it to

tempered distributions. If we set η = ψ̂ then ψ̂ = η and ψ = Gψ̂ = Gη
so

ψ(x) = (2π)−n
∫
e−ix·ξψ̂(ξ) dξ

= (2π)−n
∫
e−ix·ξη(ξ) dξ = (2π)−nη̂(x).

Substituting in (4.5) we find that∫
ϕη̂ dx =

∫
ϕ̂η dξ .

Now, recalling how we embed S(Rn) ↪→ S ′(Rn) we see that

(4.10) uϕ̂(η) = uϕ(η̂) ∀ η ∈ S(Rn) .

Definition 4.5. If u ∈ S ′(Rn) we define its Fourier transform by

(4.11) û(ϕ) = u(ϕ̂) ∀ ϕ ∈ S(Rn) .

As a composite map, û = u · F , with each term continuous, û is
continuous, i.e., û ∈ S ′(Rn).

Proposition 4.6. The definition (4.7) gives an isomorphism

F : S ′(Rn)→ S ′(Rn) , Fu = û

satisfying the identities

(4.12) D̂αu = ξαu , x̂αu = (−1)|α|Dαû .
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Proof. Since û = u ◦ F and G is the 2-sided inverse of F ,

(4.13) u = û ◦ G

gives the inverse to F : S ′(Rn)→ S ′(Rn), showing it to be an isomor-
phism. The identities (4.12) follow from their counterparts on S(Rn):

D̂αu(ϕ) = Dαu(ϕ̂) = u((−1)|α|Dαϕ̂)

= u(ξ̂αϕ) = û(ξαϕ) = ξαû(ϕ) ∀ ϕ ∈ S(Rn) .

�

We can also define Sobolev spaces of negative order:

(4.14) Hm(Rn) =
{
u ∈ S ′(Rn) ; û ∈ 〈ξ〉−mL2(Rn)

}
.

Proposition 4.7. If m ≤ 0 is an integer then u ∈ Hm(Rn) if and
only if it can be written in the form

(4.15) u =
∑
|α|≤−m

Dαvα , vα ∈ L2(Rn) .

Proof. If u ∈ S ′(Rn) is of the form (4.15) then

(4.16) û =
∑
|α|≤−m

ξαv̂α with v̂α ∈ L2(Rn) .

Thus 〈ξ〉mû =
∑
|α|≤−m ξ

α〈ξ〉mv̂α. Since all the factors ξα〈ξ〉m are

bounded, each term here is in L2(Rn), so 〈ξ〉mû ∈ L2(Rn) which is the
definition, u ∈ 〈ξ〉−mL2(Rn).

Conversely, suppose u ∈ Hm(Rn), i.e., 〈ξ〉mû ∈ L2(Rn). The func-
tion  ∑

|α|≤−m

|ξα|

 · 〈ξ〉m ∈ L2(Rn) (m < 0)

is bounded below by a positive constant. Thus

v =

 ∑
|α|≤−m

|ξα|

−1

û ∈ L2(Rn) .

Each of the functions v̂α = sgn(ξα)v̂ ∈ L2(Rn) so the identity (4.16),
and hence (4.15), follows with these choices.

�
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Proposition 4.8. Each of the Sobolev spaces Hm(Rn) is a Hilbert
space with the norm and inner product

‖u‖Hm =

(∫
Rn
|û(ξ)|2 〈ξ〉2m dξ

)1/2

,(4.17)

〈u, v〉 =

∫
Rn
û(ξ)v̂(ξ)〈ξ〉2m dξ .

The Schwartz space S(Rn) ↪→ Hm(Rn) is dense for each m and the
pairing

Hm(Rn)×H−m(Rn) 3 (u, u′) 7−→(4.18)

((u, u′)) =

∫
Rn
û′(ξ)û′(·ξ) dξ ∈ C

gives an identification (Hm(Rn))′ = H−m(Rn).

Proof. The Hilbert space property follows essentially directly from
the definition (4.14) since 〈ξ〉−mL2(Rn) is a Hilbert space with the norm
(4.17). Similarly the density of S in Hm(Rn) follows, since S(Rn) dense
in L2(Rn) (Problem L11.P3) implies 〈ξ〉−mS(Rn) = S(Rn) is dense in
〈ξ〉−mL2(Rn) and so, since F is an isomorphism in S(Rn), S(Rn) is
dense in Hm(Rn).

Finally observe that the pairing in (4.18) makes sense, since 〈ξ〉−mû(ξ),

〈ξ〉mû′(ξ) ∈ L2(Rn) implies

û(ξ))û′(−ξ) ∈ L1(Rn) .

Furthermore, by the self-duality of L2(Rn) each continuous linear func-
tional

U : Hm(Rn)→ C , U(u) ≤ C‖u‖Hm

can be written uniquely in the form

U(u) = ((u, u′)) for some u′ ∈ H−m(Rn) .

�

Notice that if u, u′ ∈ S(Rn) then

((u, u′)) =

∫
Rn
u(x)u′(x) dx .

This is always how we “pair” functions — it is the natural pairing on
L2(Rn). Thus in (4.18) what we have shown is that this pairing on test
function

S(Rn)× S(Rn) 3 (u, u′) 7−→ ((u, u′)) =

∫
Rn
u(x)u′(x) dx
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extends by continuity to Hm(Rn)×H−m(Rn) (for each fixed m) when
it identifies H−m(Rn) as the dual of Hm(Rn). This was our ‘picture’
at the beginning.

For m > 0 the spaces Hm(Rn) represents elements of L2(Rn) that
have “m” derivatives in L2(Rn). For m < 0 the elements are ?? of “up
to −m” derivatives of L2 functions. For integers this is precisely ??.

5. Sobolev embedding

The properties of Sobolev spaces are briefly discussed above. If
m is a positive integer then u ∈ Hm(Rn) ‘means’ that u has up to
m derivatives in L2(Rn). The question naturally arises as to the sense
in which these ‘weak’ derivatives correspond to old-fashioned ‘strong’
derivatives. Of course when m is not an integer it is a little harder
to imagine what these ‘fractional derivatives’ are. However the main
result is:

Theorem 5.1 (Sobolev embedding). If u ∈ Hm(Rn) where m >
n/2 then u ∈ C0

0(Rn), i.e.,

(5.1) Hm(Rn) ⊂ C0
0(Rn) , m > n/2 .

Proof. By definition, u ∈ Hm(Rn) means v ∈ S ′(Rn) and 〈ξ〉mû(ξ) ∈
L2(Rn). Suppose first that u ∈ S(Rn). The Fourier inversion formula
shows that

(2π)n |u(x)| =
∣∣∣∣∫ eix·ξû(ξ) dξ

∣∣∣∣
≤
(∫

Rn
〈ξ〉2m |û(ξ)|2 dξ

)1/2

·

(∑
Rn
〈ξ〉−2m dξ

)1/2

.

Now, if m > n/2 then the second integral is finite. Since the first
integral is the norm on Hm(Rn) we see that

(5.2) sup
Rn
|u(x)| = ‖u‖L∞ ≤ (2π)−n‖u‖Hm , m > n/2 .

This is all for u ∈ S(Rn), but S(Rn) ↪→ Hm(Rn) is dense. The
estimate (5.2) shows that if uj → u in Hm(Rn), with uj ∈ S(Rn), then
uj → u′ in C0

0(Rn). In fact u′ = u in S ′(Rn) since uj → u in L2(Rn)
and uj → u′ in C0

0(Rn) both imply that
∫
ujϕ converges, so∫

Rn
ujϕ→

∫
Rn
uϕ =

∫
Rn
u′ϕ ∀ ϕ ∈ S(Rn).

�
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Notice here the precise meaning of u = u′, u ∈ Hm(Rn) ⊂ L2(Rn),
u′ ∈ C0

0(Rn). When identifying u ∈ L2(Rn) with the corresponding
tempered distribution, the values on any set of measure zero ‘are lost’.
Thus as functions (5.1) means that each u ∈ Hm(Rn) has a represen-
tative u′ ∈ C0

0(Rn).
We can extend this to higher derivatives by noting that

Proposition 5.2. If u ∈ Hm(Rn), m ∈ R, then Dαu ∈ Hm−|α|(Rn)
and

(5.3) Dα : Hm(Rn)→ Hm−|α|(Rn)

is continuous.

Proof. First it is enough to show that eachDj defines a continuous
linear map

(5.4) Dj : Hm(Rn)→ Hm−1(Rn) ∀ j
since then (5.3) follows by composition.

If m ∈ R then u ∈ Hm(Rn) means û ∈ 〈ξ〉−mL2(Rn). Since D̂ju =
ξj · û, and

|ξj| 〈ξ〉−m ≤ Cm〈ξ〉−m+1 ∀ m
we conclude that Dju ∈ Hm−1(Rn) and

‖Dju‖Hm−1 ≤ Cm‖u‖Hm .

�

Applying this result we see

Corollary 5.3. If k ∈ N0 and m > n
2

+ k then

(5.5) Hm(Rn) ⊂ Ck0 (Rn) .

Proof. If |α| ≤ k, then Dαu ∈ Hm−k(Rn) ⊂ C0
0(Rn). Thus the

‘weak derivatives’ Dαu are continuous. Still we have to check that this
means that u is itself k times continuously differentiable. In fact this
again follows from the density of S(Rn) in Hm(Rn). The continuity
in (5.3) implies that if uj → u in Hm(Rn), m > n

2
+ k, then uj → u′

in Ck0 (Rn) (using its completeness). However u = u′ as before, so
u ∈ Ck0 (Rn).

�

In particular we see that

(5.6) H∞(Rn) =
⋂
m

Hm(Rn) ⊂ C∞(Rn) .

These functions are not in general Schwartz test functions.
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Proposition 5.4. Schwartz space can be written in terms of weighted
Sobolev spaces

(5.7) S(Rn) =
⋂
k

〈x〉−kHk(Rn) .

Proof. This follows directly from (5.5) since the left side is con-
tained in ⋂

k

〈x〉−kCk−n0 (Rn) ⊂ S(Rn).

�

Theorem 5.5 (Schwartz representation). Any tempered distribu-
tion can be written in the form of a finite sum

(5.8) u =
∑
|α|≤m
|β|≤m

xαDβ
xuαβ , uαβ ∈ C0

0(Rn).

or in the form

(5.9) u =
∑
|α|≤m
|β|≤m

Dβ
x(xαvαβ), vαβ ∈ C0

0(Rn).

Thus every tempered distribution is a finite sum of derivatives of
continuous functions of poynomial growth.

Proof. Essentially by definition any u ∈ S ′(Rn) is continuous with
respect to one of the norms ‖〈x〉kϕ‖Ck . From the Sobolev embedding
theorem we deduce that, with m > k + n/2,

|u(ϕ)| ≤ C‖〈x〉kϕ‖Hm ∀ ϕ ∈ S(Rn).

This is the same as∣∣〈x〉−ku(ϕ)
∣∣ ≤ C‖ϕ‖Hm ∀ ϕ ∈ S(Rn).

which shows that 〈x〉−ku ∈ H−m(Rn), i.e., from Proposition 4.8,

〈x〉−ku =
∑
|α|≤m

Dαuα , uα ∈ L2(Rn) .

In fact, choose j > n/2 and consider vα ∈ Hj(Rn) defined by
v̂α = 〈ξ〉−jûα. As in the proof of Proposition 4.14 we conclude that

uα =
∑
|β|≤j

Dβu′α,β , u
′
α,β ∈ Hj(Rn) ⊂ C0

0(Rn) .
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Thus,8

(5.10) u = 〈x〉k
∑
|γ|≤M

Dγ
αvγ , vγ ∈ C0

0(Rn) .

To get (5.9) we ‘commute’ the factor 〈x〉k to the inside; since I have
not done such an argument carefully so far, let me do it as a lemma.

Lemma 5.6. For any γ ∈ Nn
0 there are polynomials pα,γ(x) of de-

grees at most |γ − α| such that

〈x〉kDγv =
∑
α≤γ

Dγ−α (pα,γ〈x〉k−2|γ−α|v
)
.

Proof. In fact it is convenient to prove a more general result. Sup-
pose p is a polynomial of a degree at most j then there exist polynomials
of degrees at most j + |γ − α| such that

(5.11) p〈x〉kDγv =
∑
α≤γ

Dγ−α(pα,γ〈x〉k−2|γ−α|v) .

The lemma follows from this by taking p = 1.
Furthermore, the identity (5.11) is trivial when γ = 0, and proceed-

ing by induction we can suppose it is known whenever |γ| ≤ L. Taking
|γ| = L+ 1,

Dγ = DjD
γ′ |γ′| = L.

Writing the identity for γ′ as

p〈x〉kDγ′ =
∑
α′≤γ′

Dγ′−α′(pα′,γ′〈x〉k−2|γ′−α′|v)

we may differentiate with respect to xj. This gives

p〈x〉kDγ = −Dj(p〈x〉k) ·Dγ′v

+
∑
|α′|≤γ

Dγ−α′(p′α′,γ′〈x〉k−2|γ−α|+2v) .

The first term on the right expands to

(−(Djp) · 〈x〉kDγ′v − 1

i
kpxj〈x〉k−2Dγ′v) .

We may apply the inductive hypothesis to each of these terms and
rewrite the result in the form (5.11); it is only necessary to check the
order of the polynomials, and recall that 〈x〉2 is a polynomial of degree
2. �

8This is probably the most useful form of the representation theorem!
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Applying Lemma 5.6 to (5.10) gives (5.9), once negative powers of
〈x〉 are absorbed into the continuous functions. Then (5.8) follows from
(5.9) and Leibniz’s formula. �

The question arises as to the ‘meaning’ of the fractional derivatives
implicit in the definition of Hs(Rn) when s > 0 but is not an integer.
We know from that if k is the integral part of s then u ∈ Hs(Rn) is
equivalent to the statement that Dαu ∈ Hs−k(Rn), |α| ≤ k. So we can
concentrate on the case s ∈ (0, 1).

Proposition 5.7. If 0 < s < 1 then u ∈ Hs(Rn) if and only if
u ∈ L2(Rn) and

(5.12)

∫∫
|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞.

Proof. If u ∈ L2(Rn) the integrand in (5.12) is a non-negative
measureable function so the finiteness of the integral is a well-defined
condition. In fact the part of the integral away from the diagonal,
x = y, is already finite – if c > 0 then

(5.13)

∫∫
|x−y|>c

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞.

To see this use the inequality, |u(x) − u(y)|2 ≤ 2|u(x)|2 + 2|u(y|2 giv-
ing two integrals so that after changing variables and using Fubini’s
theorem

(5.14)

∫∫
|x−y|>c

|u(x)|2

|x− y|n+2s
dxdy =

∫
|u(x)|2dx

∫
|z|>c
|z|−n−2sdz

where both factors are finite. Thus the significance of (5.12) is in the
convergence across the diagonal.

Now, if u ∈ S(Rn) then (5.12) does indeed hold. We have just seen
the convergence when |x − y| > c and in |x − y| < c Taylor’s formula
(or the mean value theorem) gives, in view of the rapid decay of the
derivative

(5.15) |u(x)− u(y)| ≤ C|x− y|(1 + |x|)−n, |x− y| ≤ c

so this part of the integral is also finite
(5.16)∫∫

|x−y|<c

|u(x)− u(y)|2

|x− y|n+2s
dxdy ≤ C

∫
(1 + |x|)−2n−21

∫
|z|<c
|z|−n−2s+2

and since the power of |z| is strictly larger than −n the integral con-
verges across |z| = 0.
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So, now consider the integral (5.12) when u ∈ S(Rn); we have just
seen that it is a well-defined Lebesgue integral. We can change variable
to give, again by Fubini (which tells us that the first integral converges
a.e. and the result is integrable)∫

dz|z|−n−2s

∫
|u(z + y)− u(y)|2dy.

Then we use Plancherels’ formula on the inner integral to write it as
(5.17) ∫

|u(z + y)− u(y)|2dy = (2π)−n
∫
|F(u(z + ·)− u(·))|2dξ,

F(u(z + ·)− u(cot)) = (ez·ξ − 1)û(ξ) =⇒∫
dz|z|−n−2s

∫
|u(z + y)− u(y)|2dy =

∫
dξF (ξ)|û(ξ)|2, F (ξ) =

∫
|eiz·ξ − 1|2

|z|n+2s
dz.

As it must by Fubini’s theorem, the integrand defining F (ξ) does
indeed converge. Near infinity the integrand is bounded by 2|z|−n−2s

which is integrable and near zero, by Taylor’s formula, it is bounded by
C|z|−n−2s+2 which is also integrable. Furthermore it is clearly rotation-
invariant. Applying an orthogonal transformation F (Oξ) = F (ξ) using
the change of variable to Otz. Thus in fact F (ξ) = F (|ξ|). It is also
homogeneous of degree 2s as can be seen by scaling the variable. Thus
in fact

(5.18) F (ξ) = c|ξ|2s, c > 0.

So in fact for u ∈ S(Rn),

(5.19)

∫∫
|u(x)− u(y)|2

|x− y|n+2s
dxdy = c

∫
|ξ|2s|û(ξ)|2dξ.

Since 1 + |ξ|2s is bounded above and below by positive multiples of
(1 + |ξ|2)s (

‖u‖2
L2 +

∫∫
|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

is a Hilbert norm which is equivalent to the Hs norm on S(Rn).
So this proves the result; the density of S(Rn) in Hs(Rn) means

that if u ∈ Hs(Rn) then we can find a sequence un ∈ S(Rn) such that
un → u in L2(Rn) and un converges in Hs(Rn) (to u of course). This
implies the convergence of the integral (5.12) for un as n → ∞ and
hence that the integrals for u over |x− y| > δ are bounded by a fixed
constant. This, but monotone convergence implies that the integral for
u is finite and conversely and that (5.19) holds in the limit. �
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6. Differential operators.

In the last third of the course we will apply what we have learned
about distributions, and a little more, to understand properties of dif-
ferential operators with constant coefficients. Before I start talking
about these, I want to prove another density result.

So far we have not defined a topology on S ′(Rn) – I will leave
this as an optional exercise.9 However we shall consider a notion of
convergence. Suppose uj ∈ S ′(Rn) is a sequence in S ′(Rn). It is said
to converge weakly to u ∈ S ′(Rn) if

(6.1) uj(ϕ)→ u(ϕ) ∀ ϕ ∈ S(Rn) .

There is no ‘uniformity’ assumed here, it is rather like pointwise con-
vergence (except the linearity of the functions makes it seem stronger).

Proposition 6.1. The subspace S(Rn) ⊂ S ′(Rn) is weakly dense,
i.e., each u ∈ S ′(Rn) is the weak limit of a subspace uj ∈ S(Rn).

Proof. We can use Schwartz representation theorem to write, for
some m depending on u,

u = 〈x〉m
∑
|α|≤m

Dαuα , uα ∈ L2(Rn) .

We know that S(Rn) is dense in L2(Rn), in the sense of metric spaces
so we can find uα,j ∈ S(Rn), uα,j → uα in L2(Rn). The density result
then follows from the basic properties of weak convergence. �

Proposition 6.2. If uj → u and u′j → u′ weakly in S ′(Rn) then
cuj → cu, uj +u′j → u+u′, Dαuj → Dαu and 〈x〉muj → 〈x〉mu weakly
in S ′(Rn).

Proof. This follows by writing everyting in terms of pairings, for
example if ϕ ∈ S(Rn)

Dαuj(ϕ) = uj((−1)(α)Dαϕ)→ u((−1)(α)Dαϕ) = Dαu(ϕ) .

�

This weak density shows that our definition of Dj, and xj× are
unique if we require Proposition 6.2 to hold.

We have discussed differentiation as an operator (meaning just a
linear map between spaces of function-like objects)

Dj : S ′(Rn)→ S ′(Rn) .

9Problem 34.
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Any polynomial on Rn

p(ξ) =
∑
|α|≤m

pαξ
α , pα ∈ C

defines a differential operator10

(6.2) p(D)u =
∑
|α|≤m

pαD
αu .

Before discussing any general theorems let me consider some exam-
ples.

On R2, ∂ = ∂x + i∂y“d-bar operator”(6.3)

on Rn, ∆ =
n∑
j=1

D2
j“Laplacian”(6.4)

on R× Rn = Rn+1, D2
t −∆“Wave operator”(6.5)

onR× Rn = Rn+1, ∂t + ∆“Heat operator”(6.6)

on R× Rn = Rn+1, Dt + ∆“Schrödinger operator”(6.7)

Functions, or distributions, satisfying ∂u = 0 are said to be holo-
morphic, those satisfying ∆u = 0 are said to be harmonic.

Definition 6.3. An element E ∈ S ′(Rn) satisfying

(6.8) P (D)E = δ

is said to be a (tempered) fundamental solution of P (D).

Theorem 6.4 (without proof). Every non-zero constant coefficient
differential operator has a tempered fundamental solution.

This is quite hard to prove and not as interetsing as it might seem.
We will however give lots of examples, starting with ∂. Consider the
function

(6.9) E(x, y) =
1

2π
(x+ iy)−1 , (x, y) 6= 0 .

Lemma 6.5. E(x, y) is locally integrable and so defines E ∈ S ′(R2)
by

(6.10) E(ϕ) =
1

2π

∫
R2

(x+ iy)−1ϕ(x, y) dx dy ,

and E so defined is a tempered fundamental solution of ∂.

10More correctly a partial differential operator with constant coefficients.
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Proof. Since (x + iy)−1 is smooth and bounded away from the
origin the local integrability follows from the estimate, using polar co-
ordinates,

(6.11)

∫
|(x,y)|≤1

dx dy

|x+ iy|
=

∫ 2π

0

∫ 1

0

r dr dθ

r
= 2π .

Differentiating directly in the region where it is smooth,

∂x(x+ iy)−1 = −(x+ iy)−2 , ∂y(x+ iy)−1 = −i(x ∈ iy)−2

so indeed, ∂E = 0 in (x, y) 6= 0.11

The derivative is really defined by

(∂E)(ϕ) = E(−∂ϕ)(6.12)

= lim
ε↓0
− 1

2π

∫
|x|≥ε
|y|≥ε

(x+ iy)−1 ∂ϕ dx dy .

Here I have cut the space {|x| ≤ ε , |y| ≤ ε} out of the integral and used
the local integrability in taking the limit as ε ↓ 0. Integrating by parts
in x we find

−
∫
|x|≥ε
|y|≥ε

(x+ iy)−1∂xϕdx dy =

∫
|x|≥ε
|y|≥ε

(∂x(x+ iy)−1)ϕdx dy

+

∫
|y|≤ε
x=ε

(x+ iy)−1ϕ(x, y) dy −
∫
|y|≤ε
x=−ε

(x+ iy)−1ϕ(x, y) dy .

There is a corrsponding formula for integration by parts in y so,
recalling that ∂E = 0 away from (0, 0),

(6.13) 2π∂E(ϕ) =

lim
ε↓0

∫
|y|≤ε

[(ε+ iy)−1ϕ(ε, y)− (−ε+ iy)−1ϕ(−ε, y)] dy

+ i lim
ε↓0

∫
|x|≤ε

[(x+ iε)−1ϕ(x, ε)− (x− iε)−1ϕ(x, ε)] dx ,

assuming that both limits exist. Now, we can write

ϕ(x, y) = ϕ(0, 0) + xψ1(x1y) + yψ2(x, y) .

Replacing ϕ by either xψ1 or yψ2 in (6.13) both limits are zero. For
example ∣∣∣∣ ∫

|y|≤ε
(ε+ iy)−1εψ1(ε, y) dy

∣∣∣∣ ≤ ∫
|y|≤ε
|ψ1| → 0 .

11Thus at this stage we know ∂E must be a sum of derivatives of δ.
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Thus we get the same result in (6.13) by replacing ϕ(x, y) by ϕ(0, 0).
Then 2π∂E(ϕ) = cϕ(0),

c = lim
ε↓0

2ε

∫
|y|≤ε

dy

ε2 + y2
= lim

ε↓0
<

∫
|y|≤1

dy

1 + y2
= 2π .

�

Let me remind you that we have already discussed the convolution
of functions

u ∗ v(x) =

∫
u(x− y)v(y) dy = v ∗ u(x) .

This makes sense provided u is of slow growth and s ∈ S(Rn). In fact
we can rewrite the definition in terms of pairing

(6.14) (u ∗ ϕ)(x) = 〈u, ϕ(x− ·)〉
where the · indicates the variable in the pairing.

Theorem 6.6 (Hörmander, Theorem 4.1.1). If u ∈ S ′(Rn) and
ϕ ∈ S(Rn) then u ∗ ϕ ∈ S ′(Rn) ∩ C∞(Rn) and if supp(ϕ) b Rn

supp(u ∗ ϕ) ⊂ supp(u) + supp(ϕ) .

For any multi-index α

Dα(u ∗ ϕ) = Dαu ∗ ϕ = u ∗Dαϕ .

Proof. If ϕ ∈ S(Rn) then for any fixed x ∈ Rn,

ϕ(x− ·) ∈ S(Rn) .

Indeed the seminorm estimates required are

sup
y

(1 + |y|2)k/2 |Dα
yϕ(x− y)| <∞ ∀ α, k > 0 .

Since Dα
yϕ(x− y) = (−1)|α|(Dαϕ)(x− y) and

(1 + |y|2) ≤ (1 + |x− y|2)(1 + |x|2)

we conclude that

‖(1 + |y|2)k/2Dα
y(x− y)‖L∞ ≤ (1 + |x|2)k/2‖〈y〉kDα

yϕ(y)‖L∞ .
The continuity of u ∈ S ′(Rn) means that for some k

|u(ϕ)| ≤ C sup
|α|≤k
‖(y)kDαϕ‖L∞

so it follows that

(6.15) |u ∗ ϕ(x)| = |〈u, ϕ(x− ·)〉| ≤ C(1 + |x|2)k/2 .



80 3. DISTRIBUTIONS

The argument above shows that x 7→ ϕ(x− ·) is a continuous func-
tion of x ∈ Rn with values in S(Rn), so u∗ϕ is continuous and satisfies
(6.15). It is therefore an element of S ′(Rn).

Differentiability follows in the same way since for each j, with ej
the jth unit vector

ϕ(x+ sej − y)− ϕ(x− y)

s
∈ S(Rn)

is continuous in x ∈ Rn, s ∈ R. Thus, u ∗ ϕ has continuous partial
derivatives and

Dju ∗ ϕ = u ∗Djϕ .

The same argument then shows that u∗ϕ ∈ C∞(Rn). That Dj(u∗ϕ) =
Dju ∗ ϕ follows from the definition of derivative of distributions

Dj(u ∗ ϕ(x)) = (u ∗Djϕ)(x)

= 〈u,Dxjϕ(x− y)〉 = −〈u(y), Dyjϕ(x− y)〉y
= (Dju) ∗ ϕ .

Finally consider the support property. Here we are assuming that
supp(ϕ) is compact; we also know that supp(u) is a closed set. We
have to show that

(6.16) x /∈ supp(u) + supp(ϕ)

implies u ∗ ϕ(x′) = 0 for x′ near x. Now (6.16) just means that

(6.17) suppϕ(x− ·) ∩ supp(u) = φ ,

Since suppϕ(x − ·) = {y ∈ Rn;x− y ∈ supp(ϕ)}, so both statements
mean that there is no y ∈ supp(ϕ) with x−y ∈ supp(u). This can also
be written

supp(ϕ) ∩ suppu(x− ·) = φ

and as we showed when discussing supports implies

u ∗ ϕ(x′) = 〈u(x′ − ·), ϕ〉 = 0 .

From (6.17) this is an open condition on x′, so the support property
follows.

�

Now suppose ϕ, ψ ∈ S(Rn) and u ∈ S ′(Rn). Then

(6.18) (u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ) .

This is really Hörmander’s Lemma 4.1.3 and Theorem 4.1.2; I ask you
to prove it as Problem 35.

We have shown that u ∗ ϕ is C∞ if u ∈ S ′(Rn) and ϕ ∈ S(Rn),
i.e., the regularity of u ∗ ϕ follows from the regularity of one of the
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factors. This makes it reasonable to expect that u ∗ v can be defined
when u ∈ S ′(Rn), v ∈ S ′(Rn) and one of them has compact support.
If v ∈ C∞c (Rn) and ϕ ∈ S(Rn) then

u ∗ v(ϕ) =

∫
〈u(·), v(x− ·)〉ϕ(x) dx =

∫
〈u(·), v(x− ·)〉v̌ϕ(−x) dx

where ϕ̌(z) = ϕ(−z). In fact using Problem 35,

(6.19) u ∗ v(ϕ) = ((u ∗ v) ∗ ϕ̌)(0) = (u ∗ (v ∗ ϕ̌))(0) .

Here, v, ϕ are both smooth, but notice

Lemma 6.7. If v ∈ S ′(Rn) has compact support and ϕ ∈ S(Rn)
then v ∗ ϕ ∈ S(Rn).

Proof. Since v ∈ S ′(Rn) has compact support there exists χ ∈
C∞c (Rn) such that χv = v. Then

v ∗ ϕ(x) = (χv) ∗ ϕ(x) = 〈χv(y), ϕ(x− y)〉y
= 〈u(y), χ(y)ϕ(x− y)〉y .

Thus, for some k,

|v ∗ ϕ(x)| ≤ C‖χ(y)ϕ(x− y)‖(k)

where ‖ ‖(k) is one of our norms on S(Rn). Since χ is supported in
some large ball,

‖χ(y)ϕ(x− y)‖(k)

≤ sup
|α|≤k

∣∣〈y〉kDα
y(χ(y)ϕ(x− y))

∣∣
≤ C sup

|y|≤R
sup
|α|≤k
|(Dαϕ)(x− y)|

≤ CN sup
|y|≤R

(1 + |x− y|2)−N/2

≤ CN(1 + |x|2)−N/2 .

Thus (1 + |x|2)N/2 |v ∗ ϕ| is bounded for each N . The same argument
applies to the derivative using Theorem 6.6, so

v ∗ ϕ ∈ S(Rn) .

�

In fact we get a little more, since we see that for each k there exists
k′ and C (depending on k and v) such that

‖v ∗ ϕ‖(k) ≤ C‖ϕ‖(k′) .
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This means that
v∗ : S(Rn)→ S(Rn)

is a continuous linear map.
Now (6.19) allows us to define u∗v when u ∈ S ′(Rn) and v ∈ S ′(Rn)

has compact support by

u ∗ v(ϕ) = u ∗ (v ∗ ϕ̌)(0) .

Using the continuity above, I ask you to check that u ∗ v ∈ S ′(Rn) in
Problem 36. For the moment let me assume that this convolution has
the same properties as before – I ask you to check the main parts of
this in Problem 37.

Recall that E ∈ S ′(Rn) is a fundamental situation for P (D), a
constant coefficient differential operator, if P (D)E = δ. We also use a
weaker notion.

Definition 6.8. A parametrix for a constant coefficient differential
operator P (D) is a distribution F ∈ S ′(Rn) such that

(6.20) P (D)F = δ + ψ , ψ ∈ C∞(Rn) .

An operator P (D) is said to be hypoelliptic if it has a parametrix sat-
isfying

(6.21) sing supp(F ) ⊂ {0} ,
where for any u ∈ S ′(Rn)

(6.22) (sing supp(u)){ = {x ∈ Rn; ∃ϕ ∈ C∞c (Rn) ,

ϕ(x) 6= 0, ϕu ∈ C∞c (Rn)} .

Since the same ϕ must work for nearby points in (6.22), the set
sing supp(u) is closed. Furthermore

(6.23) sing supp(u) ⊂ supp(u) .

As Problem 37 I ask you to show that if K b Rn and K∩sing supp(u) =
φ the ∃ ϕ ∈ C∞c (Rn) with ϕ(x) = 1 in a neighbourhood of K such that
ϕu ∈ C∞c (Rn). In particular

(6.24) sing supp(u) = φ⇒ u ∈ S ′(Rn) ∩ C∞(Rn) .

Theorem 6.9. If P (D) is hypoelliptic then

(6.25) sing supp(u) = sing supp(P (D)u) ∀ u ∈ S ′(Rn) .

Proof. One half of this is true for any differential operator:

Lemma 6.10. If u ∈ S ′(Rn) then for any polynomial

(6.26) sing supp(P (D)u) ⊂ sing supp(u) ∀ u ∈ S ′(Rn) .
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�

Proof. We must show that x /∈ sing supp(u)⇒ x /∈ sing supp(P (D)u).
Now, if x /∈ sing supp(u) we can find ϕ ∈ C∞c (Rn), ϕ ≡ 1 near x, such
that ϕu ∈ C∞c (Rn). Then

P (D)u = P (D)(ϕu+ (1− ϕ)u)

= P (D)(ϕu) + P (D)((1− ϕ)u) .

The first term is C∞ and x /∈ supp(P (D)((1−ϕ)u)), so x /∈ sing supp(P (D)u).
�

It remains to show the converse of (6.26) where P (D) is assumed to
be hypoelliptic. Take F , a parametrix for P (D) with sing suppu ⊂ {0}
and assume, or rather arrange, that F have compact support. In fact
if x /∈ sing supp(P (D)u) we can arrange that

(supp(F ) + x) ∩ sing supp(P (D)u) = φ .

Now P (D)F = δψ with ψ ∈ C∞c (Rn) so

u = δ ∗ u = (P (D)F ) ∗ u− ψ ∗ u.
Since ψ ∗ u ∈ C∞ it suffices to show that x̄ /∈ sing supp ((P (D)u) ∗ f) .

Take ϕ ∈ C∞c (Rn) with ϕf ∈ C∞, f = P (D)u but

(suppF + x) ∩ supp(ϕ) = 0 .

Then f = f1 + f2, f1 = ϕf ∈ C∞c (Rn) so

f ∗ F = f1 ∗ F + f2 ∗ F
where f1 ∗ F ∈ C∞(Rn) and x /∈ supp(f2 ∗ F ). It follows that x /∈
sing supp(u).

Example 6.1. If u is holomorphic on Rn, ∂u = 0, then u ∈ C∞(Rn).

Recall from last time that a differential operator P (D) is said to be
hypoelliptic if there exists F ∈ S ′(Rn) with

(6.27) P (D)F − δ ∈ C∞(Rn) and sing supp(F ) ⊂ {0} .
The second condition here means that if ϕ ∈ C∞c (Rn) and ϕ(x) = 1

in |x| < ε for some ε > 0 then (1 − ϕ)F ∈ C∞(Rn). Since P (D)((1 −
ϕ)F ) ∈ C∞(Rn) we conclude that

P (D)(ϕF )− δ ∈ C∞c (Rn)

and we may well suppose that F , replaced now by ϕF , has compact
support. Last time I showed that

If P (D) is hypoelliptic and u ∈ S ′(Rn) then

sing supp(u) = sing supp(P (D)u) .
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I will remind you of the proof later.
First however I want to discuss the important notion of ellipticity.

Remember that P (D) is ‘really’ just a polynomial, called the charac-
teristic polynomial

P (ξ) =
∑
|α|≤m

Cαξ
α .

It has the property

P̂ (D)u(ξ) = P (ξ)û(ξ) ∀ u ∈ S ′(Rn) .

This shows (if it isn’t already obvious) that we can remove P (ξ) from
P (D) thought of as an operator on S ′(Rn).

We can think of inverting P (D) by dividing by P (ξ). This works
well provided P (ξ) 6= 0, for all ξ ∈ Rn. An example of this is

P (ξ) = |ξ|2 + 1 =
n∑
j=1

+1 .

However even the Laplacian, ∆ =
∑n

j=1D
2
j , does not satisfy this rather

stringent condition.
It is reasonable to expect the top order derivatives to be the most

important. We therefore consider

Pm(ξ) =
∑
|α|=m

Cαξ
α

the leading part, or principal symbol, of P (D).

Definition 6.11. A polynomial P (ξ), or P (D), is said to be elliptic
of order m provided Pm(ξ) 6= 0 for all 0 6= ξ ∈ Rn.

So what I want to show today is

Theorem 6.12. Every elliptic differential operator P (D) is hypoel-
liptic.

We want to find a parametrix for P (D); we already know that we
might as well suppose that F has compact support. Taking the Fourier

transform of (6.27) we see that F̂ should satisfy

(6.28) P (ξ)F̂ (ξ) = 1 + ψ̂, ψ̂ ∈ S(Rn) .

Here we use the fact that ψ ∈ C∞c (Rn) ⊂ S(Rn), so ψ̂ ∈ S(Rn) too.
First suppose that P (ξ) = Pm(ξ) is actually homogeneous of degree

m. Thus

Pm(ξ) = |ξ|m Pm(ξ̂), ξ̂ = ξ/ |ξ| , ξ 6= 0 .
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The assumption at ellipticity means that

(6.29) Pm(ξ̂) 6= 0 ∀ ξ̂ ∈ Sn−1 = {ξ ∈ Rn; |ξ| = 1} .
Since Sn−1 is compact and Pm is continuous

(6.30)
∣∣∣Pm(ξ̂)

∣∣∣ ≥ C > 0 ∀ ξ̂ ∈ Sn−1 ,

for some constant C. Using homogeneity

(6.31)
∣∣∣Pm(ξ̂)

∣∣∣ ≥ C |ξ|m , C > 0 ∀ ξ ∈ Rn .

Now, to get F̂ from (6.28) we want to divide by Pm(ξ) or multiply
by 1/Pm(ξ). The only problem with defining 1/Pm(ξ) is at ξ = 0. We
shall simply avoid this unfortunate point by choosing P ∈ C∞c (Rn) as
before, with ϕ(ξ) = 1 in |ξ| ≤ 1.

Lemma 6.13. If Pm(ξ) is homogeneous of degree m and elliptic then

(6.32) Q(ξ) =
(1− ϕ(ξ))

Pm(ξ)
∈ S ′(Rn)

is the Fourier transform of a parametrix for Pm(D), satisfying (6.27).

Proof. Clearly Q(ξ) is a continuous function and |Q(ξ)| ≤ C(1 +
|ξ|)−m ∀ ξ ∈ Rn, so Q ∈ S ′(Rn). It therefore is the Fourier transform
of some F ∈ S ′(Rn). Furthermore

̂Pm(D)F (ξ) = Pm(ξ)F̂ = Pm(ξ)Q(ξ)

= 1− ϕ(ξ) ,

⇒ Pm(D)F = δ + ψ , ψ̂(ξ) = −ϕ(ξ) .

Since ϕ ∈ C∞c (Rn) ⊂ S(Rn), ψ ∈ S(Rn) ⊂ C∞(Rn). Thus F is a
parametrix for Pm(D). We still need to show the ‘hard part’ that

(6.33) sing supp(F ) ⊂ {0} .
�

We can show (6.33) by considering the distributions xαF . The idea
is that for |α| large, xα vanishes rather rapidly at the origin and this
should ‘weaken’ the singularity of F there. In fact we shall show that

(6.34) xαF ∈ H |α|+m−n−1(Rn) , |α| > n+ 1−m.

If you recall, these Sobolev spaces are defined in terms of the Fourier
transform, namely we must show that

x̂αF ∈ 〈ξ〉−|α|−m+n+1L2(Rn) .
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Now x̂αF = (−1)|α|Dα
ξF̂ , so what we need to cinsider is the behaviour

of the derivatives of F̂ , which is just Q(ξ) in (6.32).

Lemma 6.14. Let P (ξ) be a polynomial of degree m satisfying

(6.35) |P (ξ)| ≥ C |ξ|m in |ξ| > 1/C for some C > 0 ,

then for some constants Cα

(6.36)

∣∣∣∣Dα 1

P (ξ)

∣∣∣∣ ≤ Cα |ξ|−m−|α| in |ξ| > 1/C .

Proof. The estimate in (6.36) for α = 0 is just (6.35). To prove
the higher estimates that for each α there is a polynomial of degree at
most (m− 1) |α| such that

(6.37) Dα 1

P (ξ)
=

Lα(ξ)

(P (ξ))1+|α| .

Once we know (6.37) we get (6.36) straight away since∣∣∣∣Dα 1

P (ξ)

∣∣∣∣ ≤ C ′α |ξ|
(m−1)|α|

C1+|α| |ξ|m(1+|α|) ≤ Cα |ξ|−m−|α| .

We can prove (6.37) by induction, since it is certainly true for α = 0.
Suppose it is true for |α| ≤ k. To get the same identity for each β with
|β| = k+1 it is enough to differentiate one of the identities with |α| = k
once. Thus

Dβ 1

P (ξ)
= DjD

α 1

P (ξ)
=
DjLα(ξ)

P (ξ)1+|α| −
(1 + |α|)LαDjP (ξ)

(P (ξ))2+|α| .

Since Lβ(ξ) = P (ξ)DjLα(ξ)− (1 + |α|)Lα(ξ)DjP (ξ) is a polynomial of
degree at most (m−1) |α|+m−1 = (m−1) |β| this proves the lemma.

�

Going backwards, observe thatQ(ξ) = 1−ϕ
Pm(ξ)

is smooth in |ξ| ≤ 1/C,

so (6.36) implies that

|DαQ(ξ)| ≤ Cα(1 + |ξ|)−m−|α|(6.38)

⇒ 〈ξ〉`DαQ ∈ L2(Rn) if `−m− |α| < −n
2
,

which certainly holds if ` = |α| + m − n − 1, giving (6.34). Now, by
Sobolev’s embedding theorem

xαF ∈ Ck if |α| > n+ 1−m+ k +
n

2
.



6. DIFFERENTIAL OPERATORS. 87

In particular this means that if we choose µ ∈ C∞c (Rn) with 0 /∈ supp(µ)

then for every k, µ/ |x|2k is smooth and

µF =
µ

|x|2k
|x|2k F ∈ C2`−2n , ` > n .

Thus µF ∈ C∞c (Rn) and this is what we wanted to show, sing supp(F ) ⊂
{0}.

So now we have actually proved that Pm(D) is hypoelliptic if it is
elliptic. Rather than go through the proof again to make sure, let me
go on to the general case and in doing so review it.

Proof. Proof of theorem. We need to show that if P (ξ) is elliptic
then P (D) has a parametrix F as in (6.27). From the discussion above
the ellipticity of P (ξ) implies (and is equivalent to)

|Pm(ξ)| ≥ c |ξ|m , c > 0 .

On the other hand

P (ξ)− Pm(ξ) =
∑
|α|<m

Cαξ
α

is a polynomial of degree at most m− 1, so

|P (ξ)− Pm(ξ)| 2 ≤ C ′(1 + |ξ|)m−1 .

This means that id C > 0 is large enough then in |ξ| > C, C ′(1 +
|ξ|)m−1 < c

2
|ξ|m, so

|P (ξ)| ≥ |Pm(ξ)| − |P (ξ)− Pm(ξ)|

≥ c |ξ|m − C ′(1 + |ξ|)m−1 ≥ c

2
|ξ|m .

This means that P (ξ) itself satisfies the conditions of Lemma 6.14.
Thus if ϕ ∈ C∞c (Rn) is equal to 1 in a large enough ball then Q(xi) =
(1− ϕ(ξ))/P (ξ) in C∞ and satisfies (6.36) which can be written

|DαQ(ξ)| ≤ Cα(1 + |ξ|)m−|α| .

The discussion above now shows that defining F ∈ S ′(Rn) by F̂ (ξ) =
Q(ξ) gives a solution to (6.27).

�

The last step in the proof is to show that if F ∈ S ′(Rn) has compact
support, and satisfies (6.27), then

u ∈ S(Rn) , P (D)u ∈ S ′(Rn) ∩ C∞(Rn)

⇒ u = F ∗ (P (D)u)− ψ ∗ u ∈ C∞(Rn) .

Let me refine this result a little bit.
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Proposition 6.15. If f ∈ S ′(Rn) and µ ∈ S ′(Rn) has compact
support then

sing supp(u ∗ f) ⊂ sing supp(u) + sing supp(f).

Proof. We need to show that p /∈ sing supp(u) ∈ sing supp(f)
then p /∈ sing supp(u ∗ f). Once we can fix p, we might as well suppose
that f has compact support too. Indeed, choose a large ball B(R, 0)
so that

z /∈ B(0, R)⇒ p /∈ supp(u) +B(0, R) .

This is possible by the assumed boundedness of supp(u). Then choose
ϕ ∈ C∞c (Rn) with ϕ = 1 on B(0, R); it follows from Theorem L16.2, or
rather its extension to distributions, that φ /∈ supp(u(1 − ϕ)f), so we
can replace f by ϕf , noting that sing supp(ϕf) ⊂ sing supp(f). Now if
f has compact support we can choose compact neighbourhoods K1, K2

of sing supp(u) and sing supp(f) such that p /∈ K1 + K2. Furthermore
we an decompose u = u1 + u2, f = f1 + f2 so that supp(u1) ⊂ K1,
supp(f2) ⊂ K2 and u2, f2 ∈ C∞(Rn). It follows that

u ∗ f = u1 ∗ f1 + u2 ∗ f2 + u1 ∗ f2 + u2 ∗ f2 .

Now, p /∈ supp(u1 ∗f1), by the support property of convolution and the
three other terms are C∞, since at least one of the factors is C∞. Thus
p /∈ sing supp(u ∗ f). �

The most important example of a differential operator which is
hypoelliptic, but not elliptic, is the heat operator

(6.39) ∂t + ∆ = ∂t −
n∑
j=1

∂2
xj
.

In fact the distribution

E(t, x) =

{
1

(4πt)n/2
exp

(
− |x|

2

4t

)
t ≥ 0

0 t ≤ 0
(6.40)

is a fundamental solution. First we need to check that E is a distri-
bution. Certainly E is C∞ in t > 0. Moreover as t ↓ 0 in x 6= 0 it
vanishes with all derivatives, so it is C∞ except at t = 0, x = 0. Since
it is clearly measurable we will check that it is locally integrable near
the origin, i.e.,

(6.41)

∫
0≤t≤1
|x|≤1

E(t, x) dx dt <∞ ,
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since E ≥ 0. We can change variables, setting X = x/t1/2, so dx =
tn/2 dX and the integral becomes

1

(4π)n/2

∫ ′
0

∫
|X|≤t−1/2

exp(−|X|
2

4
) dx dt <∞ .

Since E is actually bounded near infinity, it follows that E ∈ S ′Rn,

E(ϕ) =

∫
t≥0

E(t, x)ϕ(t, x) dx dt ∀ ϕ ∈ S(Rn+1) .

As before we want to compute

(∂t + ∆)E(ϕ) = E(−∂tϕ+ ∆ϕ)(6.42)

= lim
E↓0

∫ ∞
E

∫
Rn
E(t, x)(−∂tϕ+ ∆ϕ) dx dt .

First we check that (∂t + ∆)E = 0 in t > 0, where it is a C∞ function.
This is a straightforward computation:

∂tE = − n
2t
E +

|x|2

4t2
E

∂xjE = −xj
2t
E , ∂2

xj
E = − 1

2t
E +

x2
j

4t2
E

⇒ ∆E =
n

2t
E +

|x|2

4t2
E .

Now we can integrate by parts in (6.42) to get

(∂t + ∆)E(ϕ) = lim
E↓0

∫
Rn
ϕ(E , x)

e−|x|
2/4E

(4πE)n/2
dx .

Making the same change of variables as before, X = x/2E1/2,

(∂t + ∆)E(ϕ) = lim
E↓0

∫
Rn
ϕ(E , E1/2X)

e−|x|
2

πn/2
dX .

As E ↓ 0 the integral here is bounded by the integrable function
C exp(− |X|2), for some C > 0, so by Lebesgue’s theorem of domi-
nated convergence, conveys to the integral of the limit. This is

ϕ(0, 0) ·
∫
Rn
e−|x|

2 dx

πn/2
= ϕ(0, 0) .

Thus
(∂t + ∆)E(ϕ) = ϕ(0, 0)⇒ (∂t + ∆)E = δtδx ,

so E is indeed a fundamental solution. Since it vanishes in t < 0 it is
called a forward fundamrntal solution.

Let’s see what we can use it for.
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Proposition 6.16. If f ∈ S ′Rn has compact support ∃ !u ∈ S ′Rn

with supp(m) ⊂ {t ≥ −T} for some T and

(6.43) (∂t + ∆)u = f in Rn+1 .

Proof. Naturally we try u = E ∗ f . That it satisfies (6.43)follows
from the properties of convolution. Similarly if T is such that supp(f) ⊂
{t ≥ T} then

supp(u) ⊂ supp(f) + supp(E) ⊂ {t ≥ T ] .

So we need to show uniqueness. If u1, u2 ∈ S ′Rn in two solutions
of (6.43) then their difference v = u1 − u2 satisfies the ‘homogeneous’
equation (∂t + ∆)v = 0. Furthermore, v = 0 in t < T ′ for some T ′.
Given any E ∈ R choose ϕ(t) ∈ C∞(R) with ϕ(t) = 0 in t > t + 1,
ϕ(t) = 1 in t < t and consider

Et = ϕ(t)E = F1 + F2 ,

where F1 = ψEt for some ψ ∈ C∞c Rn+1), ψ = 1 near 0. Thus F1 has
comapct support and in fact F2 ∈ SRn. I ask you to check this last
statement as Problem L18.P1.

Anyway,

(∂t + ∆)(F1 + F2) = δ + ψ ∈ SRn , ψt = 0 t ≤ t .

Now,

(∂t + ∆)(Et ∗ u) = 0 = u+ ψt ∗ u .

Since supp(ψt) ⊂
{
t ≥ t ], the second tier here is supported in t ≥ t ≥

T ′. Thus u = 0 in t < t+ T ′, but t is arbitrary, so u = 0. �

Notice that the assumption that u ∈ S ′Rn is not redundant in the
statement of the Proposition, if we allow “large” solutions they be-
come non-unique. Problem L18.P2 asks you to apply the fundamental
solution to solve the initial value problem for the heat operator.

Next we make similar use of the fundamental solution for Laplace’s
operator. If n ≥ 3 the

(6.44) E = Cn |x|−n+2

is a fundamental solution. You should check that ∆En = 0 in x 6= 0
directly, I will show later that ∆En = δ, for the appropriate choice of
Cn, but you can do it directly, as in the case n = 3.

Theorem 6.17. If f ∈ SRn ∃ !u ∈ C∞0 Rn such that ∆u = f.
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Proof. Since convolution u = E ∗ f ∈ S ′Rn ∩ C∞Rn is defined we
certainly get a solution to ∆u = f this way. We need to check that
u ∈ C∞0 Rn. First we know that ∆ is hypoelliptic so we can decompose

E = F1 + F2 , F1 ∈ S ′Rn , suppF,b Rn

and then F2 ∈ C∞Rn. In fact we can see from (6.44) that

|DαF2(x)| ≤ Cα(1 + |x|)−n+2−|α| .

Now, F1 ∗ f ∈ SRn, as we showed before, and continuing the integral
we see that

|Dαu| ≤ |DαF2 ∗ f |+ CN(1 + |x|)−N ∀ N
≤ C ′α(1 + |x|)−n+2−|α| .

Since n > 2 it follows that u ∈ C∞0 Rn.
So only the uniqueness remains. If there are two solutions, u1, u2

for a given f then v = u1−u2 ∈ C∞0 Rn satisfies ∆v = 0. Since v ∈ S ′Rn

we can take the Fourier transform and see that

|χ|2 v̂(χ) = 0⇒ supp(v̂) ⊂ {0} .
an earlier problem was to conclude from this that v̂ =

∑
|α|≤mCαD

αδ
for some constants Cα. This in turn implies that v is a polynomial.
However the only polynomials in C0

0Rn are identically 0. Thus v = 0
and uniqueness follows. �

7. Cone support and wavefront set

In discussing the singular support of a tempered distibution above,
notice that

singsupp(u) = ∅
only implies that u ∈ C∞(Rn), not as one might want, that u ∈ S(Rn).
We can however ‘refine’ the concept of singular support a little to get
this.

Let us think of the sphere Sn−1 as the set of ‘asymptotic directions’
in Rn. That is, we identify a point in Sn−1 with a half-line {ax̄; a ∈
(0,∞)} for 0 6= x̄ ∈ Rn. Since two points give the same half-line if and
only if they are positive multiples of each other, this means we think
of the sphere as the quotient

(7.1) Sn−1 = (Rn \ {0})/R+.

Of course if we have a metric on Rn, for instance the usual Euclidean
metric, then we can identify Sn−1 with the unit sphere. However (7.1)
does not require a choice of metric.
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Now, suppose we consider functions on Rn \ {0} which are (posi-
tively) homogeneous of degree 0. That is f(ax̄) = f(x̄), for all a > 0,
and they are just functions on Sn−1. Smooth functions on Sn−1 cor-
respond (if you like by definition) with smooth functions on Rn \ {0}
which are homogeneous of degree 0. Let us take such a function ψ ∈
C∞(Rn\{0}), ψ(ax) = ψ(x) for all a > 0. Now, to make this smooth on
Rn we need to cut it off near 0. So choose a cutoff function χ ∈ C∞c (Rn),
with χ(x) = 1 in |x| < 1. Then

(7.2) ψR(x) = ψ(x)(1− χ(x/R)) ∈ C∞(Rn),

for any R > 0. This function is supported in |x| ≥ R. Now, if ψ has
support near some point ω ∈ Sn−1 then for R large the corresponding
function ψR will ‘localize near ω as a point at infinity of Rn.’ Rather
than try to understand this directly, let us consider a corresponding
analytic construction.

First of all, a function of the form ψR is a multiplier on S(Rn). That
is,

(7.3) ψR· : S(Rn) −→ S(Rn).

To see this, the main problem is to estimate the derivatives at infinity,
since the product of smooth functions is smooth. This in turn amounts
to estimating the deriviatives of ψ in |x| ≥ 1. This we can do using the
homogeneity.

Lemma 7.1. If ψ ∈ C∞(Rn \ {0}) is homogeneous of degree 0 then

(7.4) |Dαψ| ≤ Cα|x|−|α|.

Proof. I should not have even called this a lemma. By the chain
rule, the derivative of order α is a homogeneous function of degree −|α|
from which (7.4) follows. �

For the smoothed versio, ψR, of ψ this gives the estimates

(7.5) |DαψR(x)| ≤ Cα〈x〉−|α|.
This allows us to estimate the derivatives of the product of a Schwartz
function and ψR :

(7.6) xβDα(ψRf)

=
∑
γ≤α

(
α

γ

)
Dα−γψRx

βDγf =⇒ sup
|x|≥1

|xβDα(ψRf)| ≤ C sup ‖f‖k

for some seminorm on S(Rn). Thus the map (7.3) is actually continu-
ous. This continuity means that ψR is a multiplier on S ′(Rn), defined
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as usual by duality:

(7.7) ψRu(f) = u(ψRf) ∀ f ∈ S(Rn).

Definition 7.2. The cone-support and cone-singular-support of a
tempered distribution are the subsets Csp(u) ⊂ Rn∪Sn−1 and Css(u) ⊂
Rn ∪ Sn−1 defined by the conditions
(7.8)

Csp(u) ∩ Rn = supp(u)

(Csp(u)){ ∩ Sn−1 ={ω ∈ Sn−1;

∃ R > 0, ψ ∈ C∞(Sn−1), ψ(ω) 6= 0, ψRu = 0},
Css(u) ∩ Rn = singsupp(u)

(Css(u)){ ∩ Sn−1 ={ω ∈ Sn−1;

∃ R > 0, ψ ∈ C∞(Sn−1), ψ(ω) 6= 0, ψRu ∈ S(Rn)}.
That is, on the Rn part these are the same sets as before but ‘at

infinity’ they are defined by conic localization on Sn−1.
In considering Csp(u) and Css(u) it is convenient to combine Rn

and Sn−1 into a compactification of Rn. To do so (topologically) let
us identify Rn with the interior of the unit ball with respect to the
Euclidean metric using the map

(7.9) Rn 3 x 7−→ x

〈x〉
∈ {y ∈ Rn; |y| ≤ 1} = Bn.

Clearly |x| < 〈x〉 and for 0 ≤ a < 1, |x| = a〈x〉 has only the solution

|x| = a/(1 − a2)
1
2 . Thus if we combine (7.9) with the identification of

Sn with the unit sphere we get an identification

(7.10) Rn ∪ Sn−1 ' Bn.
Using this identification we can, and will, regard Csp(u) and Css(u) as
subsets of Bn.12

Lemma 7.3. For any u ∈ S ′(Rn), Csp(u) and Css(u) are closed

subsets of Bn and if ψ̃ ∈ C∞(Sn) has supp(ψ̃) ∩ Css(u) = ∅ then for R

sufficiently large ψ̃Ru ∈ S(Rn).

Proof. Directly from the definition we know that Csp(u) ∩ Rn is
closed, as is Css(u)∩Rn. Thus, in each case, we need to show that if ω ∈
Sn−1 and ω /∈ Csp(u) then Csp(u) is disjoint from some neighbourhood
of ω in Bn. However, by definition,

U = {x ∈ Rn;ψR(x) 6= 0} ∪ {ω′ ∈ Sn−1;ψ(ω′) 6= 0}
12In fact while the topology here is correct the smooth structure on Bn is not

the right one�– see Problem?? For our purposes here this issue is irrelevant.
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is such a neighbourhood. Thus the fact that Csp(u) is closed follows
directly from the definition. The argument for Css(u) is essentially the
same.

The second result follows by the use of a partition of unity on Sn−1.
Thus, for each point in supp(ψ) ⊂ Sn−1 there exists a conic localizer for
which ψRu ∈ S(Rn). By compactness we may choose a finite number of

these functions ψj such that the open sets {ψj(ω) > 0} cover supp(ψ̃).
By assumption (ψj)Rju ∈ S(Rn) for some Rj > 0. However this will
remain true if Rj is increased, so we may suppose that Rj = R is
independent of j. Then for function

µ =
∑
j

|ψj|2 ∈ C∞(Sn−1)

we have µRu ∈ S(Rn). Since ψ̃ = ψ′µ for some µ ∈ C∞(Sn−1) it follows

that ψ̃R+1u ∈ S(Rn) as claimed. �

Corollary 7.4. If u ∈ S ′(Rn) then Css(u) = ∅ if and only if
u ∈ S(Rn).

Proof. Certainly Css(u) = ∅ if u ∈ S(Rn). If u ∈ S ′(Rn) and
Css(u) = ∅ then from Lemma 7.3, ψRu ∈ S(Rn) where ψ = 1. Thus
v = (1 − ψR)u ∈ C−∞c (Rn) has singsupp(v) = ∅ so v ∈ C∞c (Rn) and
hence u ∈ S(Rn). �

Of course the analogous result for Csp(u), that Csp(u) = ∅ if and
only if u = 0 follows from the fact that this is true if supp(u) = ∅. I
will treat a few other properties as self-evident. For instance
(7.11)

Csp(φu) ⊂ Csp(u), Css(φu) ⊂ Css(u) ∀ u ∈ S ′(Rn), φ ∈ S(Rn)

and

(7.12) Csp(c1u1 + c2u2) ⊂ Csp(u1) ∪ Csp(u2),

Css(c1u1 + c2u2) ⊂ Css(u1) ∪ Css(u2)

∀ u1, u2 ∈ S ′(Rn), c1, c2 ∈ C.

One useful consequence of having the cone support at our disposal
is that we can discuss sufficient conditions to allow us to multiply dis-
tributions; we will get better conditions below using the same idea but
applied to the wavefront set but this preliminary discussion is used
there. In general the product of two distributions is not defined, and
indeed not definable, as a distribution. However, we can always multi-
ply an element of S ′(Rn) and an element of S(Rn).
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To try to understand multiplication look at the question of pairing
between two distributions.

Lemma 7.5. If Ki ⊂ Bn, i = 1, 2, are two disjoint closed (hence
compact) subsets then we can define an unambiguous pairing

(7.13)

{u ∈ S ′(Rn); Css(u) ⊂ K1} × {u ∈ S ′(Rn); Css(u) ⊂ K2} 3 (u1, u2)

−→ u1(u2) ∈ C.

Proof. To define the pairing, choose a function ψ ∈ C∞(Sn−1)
which is identically equal to 1 in a neighbourhood of K1∩Sn−1 and with
support disjoint from K2∩Sn−1. Then extend it to be homogeneous, as
above, and cut off to get ψR. If R is large enough Csp(ψR) is disjoint
from K2. Then ψR + (1 − ψ)R = 1 + ν where ν ∈ C∞c (Rn). We can
find another function µ ∈ C∞c (Rn) such that ψ1 = ψR + µ = 1 in
a neighbourhood of K1 and with Csp(ψ1) disjoint from K2. Once we
have this, for u1 and u2 as in (7.13),

(7.14) ψ1u2 ∈ S(Rn) and (1− ψ1)u1 ∈ S(Rn)

since in both cases Css is empty from the definition. Thus we can define
the desired pairing between u1 and u2 by

(7.15) u1(u2) = u1(ψ1u2) + u2((1− ψ1)u1).

Of course we should check that this definition is independent of the
cut-off function used in it. However, if we go through the definition and
choose a different function ψ′ to start with, extend it homogeneoulsy
and cut off (probably at a different R) and then find a correction term
µ′ then the 1-parameter linear homotopy between them

(7.16) ψ1(t) = tψ1 + (1− t)ψ′1, t ∈ [0, 1]

satisfies all the conditions required of ψ1 in formula (7.14). Thus in
fact we get a smooth family of pairings, which we can write for the
moment as

(7.17) (u1, u2)t = u1(ψ1(t)u2) + u2((1− ψ1(t))u1).

By inspection, this is an affine-linear function of t with derivative

(7.18) u1((ψ1 − ψ′1)u2) + u2((ψ′1 − ψ1))u1).

Now, we just have to justify moving the smooth function in (7.18) to
see that this gives zero. This should be possible since Csp(ψ′1 − ψ1) is
disjoint from both K1 and K2.

In fact, to be very careful for once, we should construct another
function χ in the same way as we constructed ψ1 to be homogenous
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near infinity and smooth and such that Csp(χ) is also disjoint from both
K1 and K2 but χ = 1 on Csp(ψ′1 − ψ1). Then χ(ψ′1 − ψ1) = ψ′1 − ψ1 so
we can insert it in (7.18) and justify

(7.19) u1((ψ1 − ψ′1)u2) = u1(χ2(ψ1 − ψ′1)u2) = (χu1)((ψ1 − ψ′1)χu2)

= (χu2)(ψ1 − ψ′1)χu1) = u2(ψ1 − ψ′1)χu1).

Here the second equality is just the identity for χ as a (multiplica-
tive) linear map on S(Rn) and hence S ′(Rn) and the operation to give
the crucial, third, equality is permissible because both elements are in
S(Rn). �

Once we have defined the pairing between tempered distibutions
with disjoint conic singular supports, in the sense of (7.14), (7.15), we
can define the product under the same conditions. Namely to define
the product of say u1 and u2 we simply set

(7.20) u1u2(φ) = u1(φu2) = u2(φu1) ∀ φ ∈ S(Rn),

provided Css(u1) ∩ Css(u2) = ∅.
Indeed, this would be true if one of u1 or u2 was itself in S(Rn) and
makes sense in general. I leave it to you to check the continuity state-
ment required to prove that the product is actually a tempered disti-
bution (Problem 78).

One can also give a similar discussion of the convolution of two
tempered distributions. Once again we do not have a definition of u∗v
as a tempered distribution for all u, v ∈ S ′(Rn). We do know how to
define the convolution if either u or v is compactly supported, or if
either is in S(Rn). This leads directly to

Lemma 7.6. If Css(u)∩Sn−1 = ∅ then u∗v is defined unambiguously
by

(7.21) u ∗ v = u1 ∗ v + u2 ∗ v, u1 = (1− χ(
x

r
))u, u2 = u− u1

where χ ∈ C∞c (Rn) has χ(x) = 1 in |x| ≤ 1 and R is sufficiently large;
there is a similar definition if Css(v) ∩ Sn−1 = ∅.

Proof. Since Css(u) ∩ Sn−1 = ∅, we know that Css(u1) = ∅ if R
is large enough, so then both terms on the right in (7.21) are well-
defined. To see that the result is independent of R just observe that
the difference of the right-hand side for two values of R is of the form
w ∗ v − w ∗ v with w compactly supported. �

Now, we can go even further using a slightly more sophisticated
decomposition based on
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Lemma 7.7. If u ∈ S ′(Rn) and Css(u) ∩ Γ = ∅ where Γ ⊂ Sn−1 is
a closed set, then u = u1 + u2 where Csp(u1) ∩ Γ = ∅ and u2 ∈ S(Rn);
in fact

(7.22) u = u′1 + u′′1 + u2 where u′1 ∈ C−∞c (Rn) and

0 /∈ supp(u′′1), x ∈ Rn \ {0}, x/|x| ∈ Γ =⇒ x /∈ supp(u′′1).

Proof. A covering argument which you should provide. �

Let Γi ⊂ Rn, i = 1, 2, be closed cones. That is they are closed sets
such that if x ∈ Γi and a > 0 then ax ∈ Γi. Suppose in addition that

(7.23) Γ1 ∩ (−Γ2) = {0}.
That is, if x ∈ Γ1 and −x ∈ Γ2 then x = 0. Then it follows that for
some c > 0,

(7.24) x ∈ Γ1, y ∈ Γ2 =⇒ |x+ y| ≥ c(|x|+ |y|).
To see this consider x + y where x ∈ Γ1, y ∈ Γ2 and |y| ≤ |x|. We
can assume that x 6= 0, otherwise the estimate is trivially true with
c = 1, and then Y = y/|x| ∈ Γ1 and X = x/|x| ∈ Γ2 have |Y | ≤ 1 and
|X| = 1. However X+Y 6= 0, since |X| = 1, so by the continuity of the
sum, |X + Y | ≥ 2c > 0 for some c > 0. Thus |X + Y | ≥ c(|X| + |Y |)
and the result follows by scaling back. The other case, of |x| ≤ |y|
follows by the same argument with x and y interchanged, so (7.24) is
a consequence of (7.23).

Lemma 7.8. For any u ∈ S ′(Rn) and φ ∈ S(Rn),

(7.25) Css(φ ∗ u) ⊂ Css(u) ∩ Sn−1.

Proof. We already know that φ ∗ u is smooth, so Css(φ ∗ u) ⊂
Sn−1. Thus, we need to show that if ω ∈ Sn−1 and ω /∈ Css(u) then
ω /∈ Css(φ ∗ u).

Fix such a point ω ∈ Sn−1 \ Css(u) and take a closed set Γ ⊂ Sn−1

which is a neighbourhood of ω but which is still disjoint from Css(u)
and then apply Lemma 7.7. The two terms φ∗u2, where u2 ∈ S(Rn) and
φ ∗u′1 where u′1 ∈ C−∞c (Rn) are both in S(Rn) so we can assume that u
has the support properties of u′′1. In particular there is a smaller closed
subset Γ1 ⊂ Sn−1 which is still a neighbourhood of ω but which does
not meet Γ2, which is the closure of the complement of Γ. If we replace
these Γi by the closed cones of which they are the ‘cross-sections’ then
we are in the situation of (7.23) and (7.23), except for the signs. That
is, there is a constant c > 0 such that

(7.26) |x− y| ≥ c(|x|+ |y|).
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Now, we can assume that there is a cutoff function ψR which has
support in Γ2 and is such that u = ψRu. For any conic cutoff, ψ′R, with
support in Γ1

(7.27) ψ′R(φ ∗ u) = 〈ψRu, φ(x− ·)〉 = 〈u(y), ψR(y)ψ′R(x)φ(x− y)〉.

The continuity of u means that this is estimated by some Schwartz
seminorm

(7.28) sup
y,|α|≤k

|Dα
y (ψR(y)ψ′R(x)φ(x− y))|(1 + |y|)k

≤ CN‖φ‖ sup
y

(1 + |x|+ |y|)−N(1 + |y|)k ≤ CN‖φ‖(1 + |x|)−N+k

for some Schwartz seminorm on φ. Here we have used the estimate
(7.24), in the form (7.26), using the properties of the supports of ψ′R
and ψR. Since this is true for any N and similar estimates hold for
the derivatives, it follows that ψ′R(u ∗ φ) ∈ S(Rn) and hence that ω /∈
Css(u ∗ φ). �

Corollary 7.9. Under the conditions of Lemma 7.6

(7.29) Css(u ∗ v) ⊂ (singsupp(u) + singsupp(v)) ∪ (Css(v) ∩ Sn−1).

Proof. We can apply Lemma 7.8 to the first term in (7.21) to
conclude that it has conic singular support contained in the second
term in (7.29). Thus it is enough to show that (7.29) holds when
u ∈ C−∞c (Rn). In that case we know that the singular support of the
convolution is contained in the first term in (7.29), so it is enough to
consider the conic singular support in the sphere at infinity. Thus, if
ω /∈ Css(v) we need to show that ω /∈ Css(u ∗ v). Using Lemma 7.7
we can decompose v = v1 + v2 + v3 as a sum of a Schwartz term, a
compact supported term and a term which does not have ω in its conic
support. Then u ∗ v1 is Schwartz, u ∗ v2 has compact support and
satisfies (7.29) and ω is not in the cone support of u ∗ v3. Thus (7.29)
holds in general. �

Lemma 7.10. If u, v ∈ S ′(Rn) and ω ∈ Css(u) ∩ Sn−1 =⇒ −ω /∈
Css(v) then their convolution is defined unambiguously, using the pair-
ing in Lemma 7.5, by

(7.30) u ∗ v(φ) = u(v̌ ∗ φ) ∀ φ ∈ S(Rn).

Proof. Since v̌(x) = v(−x), Css(v̌) = −Css(v) so applying Lemma 7.8
we know that

(7.31) Css(v̌ ∗ φ) ⊂ −Css(v) ∩ Sn−1.
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Thus, Css(v) ∩ Css(v̌ ∗ φ) = ∅ and the pairing on the right in (7.30)
is well-defined by Lemma 7.5. Continuity follows from your work in
Problem 78. �

In Problem 79 I ask you to get a bound on Css(u ∗ v)∩ Sn−1 under
the conditions in Lemma 7.10.

Let me do what is actually a fundamental computation.

Lemma 7.11. For a conic cutoff, ψR, where ψ ∈ C∞(Sn−1),

(7.32) Css(ψ̂R) ⊂ {0}.
Proof. This is actually much easier than it seems. Namely we

already know that Dα(ψR) is smooth and homogeneous of degree −|α|
near infinity. From the same argument it follows that

(7.33) Dα(xβψR) ∈ L2(Rn) if |α| > |β|+ n/2

since this is a smooth function homogeneous of degree less than −n/2
near infinity, hence square-integrable. Now, taking the Fourier trans-
form gives

(7.34) ξαDβ(ψ̂R) ∈ L2(Rn) ∀ |α| > |β|+ n/2.

If we localize in a cone near infinity, using a (completely unrelated)
cutoff ψ′R′(ξ) then we must get a Schwartz function since
(7.35)

|ξ||α|ψ′R′(ξ)Dβ(ψ̂R) ∈ L2(Rn) ∀ |α| > |β|+ n/2 =⇒ ψ′R′(ξ)ψ̂R ∈ S(Rn).

Indeed this argument applies anywhere that ξ 6= 0 and so shows that
(7.32) holds. �

Now, we have obtained some reasonable looking conditions under
which the product uv or the convolution u∗v of two elements of S ′(Rn)
is defined. However, reasonable as they might be there is clearly a flaw,
or at least a deficiency, in the discussion. We know that in the simplest
of cases,

(7.36) û ∗ v = ûv̂.

Thus, it is very natural to expect a relationship between the conditions
under which the product of the Fourier transforms is defined and the
conditions under which the convolution is defined. Is there? Well, not
much it would seem, since on the one hand we are considering the rela-
tionship between Css(û) and Css(v̂) and on the other the relationship
between Css(u) ∩ Sn−1 and Css(v) ∩ Sn−1. If these are to be related,
we would have to find a relationship of some sort between Css(u) and
Css(û). As we shall see, there is one but it is not very strong as can
be guessed from Lemma 7.11. This is not so much a bad thing as a
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sign that we should look for another notion which combines aspects of
both Css(u) and Css(û). This we will do through the notion of wave-
front set. In fact we define two related objects. The first is the more
conventional, the second is more natural in our present discussion.

Definition 7.12. If u ∈ S ′(Rn) we define the wavefront set of u
to be

(7.37) WF(u) = {(x, ω) ∈ Rn × Sn−1;

∃ φ ∈ C∞c (Rn), φ(x) 6= 0, ω /∈ Css(φ̂u)}{

and more generally the scattering wavefront set by

(7.38) WFsc(u) = WF(u) ∪ {(ω, p) ∈ Sn−1 × Bn;

∃ ψ ∈ C∞(Sn), ψ(ω) 6= 0, R > 0 such that p /∈ Css(ψ̂Ru)}{.

So, the definition is really always the same. To show that (p, q) /∈
WFsc(u) we need to find ‘a cutoff Φ near p’ – depending on whether
p ∈ Rn or p ∈ Sn−1 this is either Φ = φ ∈ C∞c (Rn) with F = φ(p) 6= 0

or a ψR where ψ ∈ C∞(Sn−1) has ψ(p) 6= 0 – such that q /∈ Css(Φ̂u).
One crucial property is

Lemma 7.13. If (p, q) /∈ WFsc(u) then if p ∈ Rn there exists a
neighbourhood U ⊂ Rn of p and a neighbourhood U ⊂ Bn of q such

that for all φ ∈ C∞c (Rn) with support in U, U ′ ∩Css(φ̂u) = ∅; similarly
if p ∈ Sn−1 then there exists a neigbourhood Ũ ⊂ Bn of p such that

U ′ ∩ Css(ψ̂Ru) = ∅ if Csp(ωR) ⊂ Ũ .

Proof. First suppose p ∈ Rn. From the definition of conic singular
support, (7.37) means precisely that there exists ψ ∈ C∞(Sn−1), ψ(ω) 6=
0 and R such that

(7.39) ψR(φ̂u) ∈ S(Rn).

Since we know that φ̂u ∈ C∞(Rn), this is actually true for all R > 0
as soon as it is true for one value. Furthermore, if φ′ ∈ C∞c (Rn) has

supp(φ′) ⊂ {φ 6= 0} then ω /∈ Css(φ̂′u) follows from ω /∈ Css(φ̂u).
Indeed we can then write φ′ = µφ where µ ∈ C∞c (Rn) so it suffices
to show that if v ∈ C−∞c (Rn) has ω /∈ Css(v̂) then ω /∈ Css(µ̂v) if
µ ∈ C∞c (Rn). Since µ̂v = (2π)−nυ ∗ û where υ̌ = µ̂ ∈ S(Rn), applying

Lemma 7.8 we see that Css(υ ∗ v̂) ⊂ Css(v̂), so indeed ω /∈ Css(φ̂′u).
The case that p ∈ Sn−1 is similar. Namely we have one cut-off ψR

with ψ(p) 6= 0 and q /∈ Css(ω̂Ru). We can take U = {ψR+10 6= 0} since if
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ψ′R′ has conic support in U then ψ′R′ = ψ′′R′ψR for some ψ′′ ∈ C∞(Sn−1).
Thus

(7.40) ψ̂′R′u = v ∗ ψ̂Ru, v̌ = ω̂′′R′′ .

From Lemma 7.11 and Corollary7.9 we deduce that

(7.41) Css(ψ̂′R′u) ⊂ Css(ω̂Ru)

and hence the result follows with U ′ a small neighourhood of q. �

Proposition 7.14. For any u ∈ S ′(Rn),

(7.42) WFsc(u) ⊂ ∂(Bn × Bn) = (Bn × Sn−1) ∪ (Sn−1 × Bn)

= (Rn × Sn−1) ∪ (Sn−1 × Sn−1) ∪ (Sn−1 × Rn)

and WF(u) ⊂ Rn are closed sets and under projection onto the first
variable

(7.43) π1(WF(u)) = singsupp(u) ⊂ Rn, π1(WFsc(u)) = Css(u) ⊂ Bn.

Proof. To prove the first part of (7.43) we need to show that
if (x̄, ω) /∈ WF(u) for all ω ∈ Sn−1 with x̄ ∈ Rn fixed, then x̄ /∈
singsupp(u). The definition (7.37) means that for each ω ∈ Sn−1 there

exists φω ∈ C∞c (Rn) with φω(x̄) 6= 0 such that ω /∈ Css(φ̂ωu). Since
Css(φu) is closed and Sn−1 is compact, a finite number of these cutoffs,

φj ∈ C∞c (Rn), can be chosen so that φj(x̄) 6= 0 with the Sn−1 \Css(φ̂ju)
covering Sn−1. Now applying Lemma 7.13 above, we can find one φ ∈
C∞c (Rn), with support in

⋂
j{φj(x) 6= 0} and φ(x̄) 6= 0, such that

Css(φ̂u) ⊂ Css(φ̂ju) for each j and hence φu ∈ S(Rn) (since it is
already smooth). Thus indeed it follows that x̄ /∈ singsupp(u). The
converse, that x̄ /∈ singsupp(u) implies (x̄, ω) /∈WF(u) for all ω ∈ Sn−1

is immediate.
The argument to prove the second part of (7.43) is similar. Since, by

definition, WFsc(u)∩(Rn×Bn) = WF(u) and Css(u)∩Rn = singsupp(u)
we only need consider points in Css(u)∩Sn−1. Now, we first check that
if θ /∈ Css(u) then {θ} × Bn ∩WFsc(u) = ∅. By definition of Css(u)
there is a cut-off ψR, where ψ ∈ C∞(Sn−1) and ψ(θ) 6= 0, such that
ψRu ∈ S(Rn). From (7.38) this implies that (θ, p) /∈ WFsc(u) for all
p ∈ Bn.

Now, Lemma 7.13 allows us to apply the same argument as used
above for WF . Namely we are given that (θ, p) /∈ WFsc(u) for all
p ∈ Bn. Thus, for each p we may find ψR, depending on p, such that

ψ(θ) 6= 0 and p /∈ Css(ψ̂Ru). Since Bn is compact, we may choose a

finite subset of these conic localizers, ψ
(j)
Rj

such that the intersection
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of the corresponding sets Css(ψ̂
(j)
Rj
u), is empty, i.e. their complements

cover Bn. Now, using Lemma 7.13 we may choose one ψ with support
in the intersection of the sets {ψ(j) 6= 0} with ψ(θ) 6= 0 and one R

such that Css(ψ̂Ru) = ∅, but this just means that ψRu ∈ S(Rn) and so
θ /∈ Css(u) as desired.

The fact that these sets are closed (in the appropriate sets) follows
directly from Lemma7.13. �

Corollary 7.15. For u ∈ S ′(Rn),

(7.44) WFsc(u) = ∅ ⇐⇒ u ∈ S(Rn).

Let me return to the definition of WFsc(u) and rewrite it, using
what we have learned so far, in terms of a decomposition of u.

Proposition 7.16. For any u ∈ S ′(Rn) and (p, q) ∈ ∂(Bn × Bn),

(7.45) (p, q) /∈WFsc(u)⇐⇒
u = u1 + u2, u1, u2 ∈ S ′(Rn), p /∈ Css(u1), q /∈ Css(û2).

Proof. For given (p, q) /∈ WFsc(u), take Φ = φ ∈ C∞c (Rn) with
φ ≡ 1 near p, if p ∈ Rn or Φ = ψR with ψ ∈ C∞(Sn−1) and ψ ≡ 1
near p, if p ∈ Sn−1. In either case p /∈ Css(u1) if u1 = (1−Φ)u directly
from the definition. So u2 = u− u1 = Φu. If the support of Φ is small
enough it follows as in the discussion in the proof of Proposition 7.14
that

(7.46) q /∈ Css(û2).

Thus we have (7.45) in the forward direction.
For reverse implication it follows directly that (p, q) /∈ WFsc(u1)

and that (p, q) /∈WFsc(u2). �

This restatement of the definition makes it clear that there a high
degree of symmetry under the Fourier transform

Corollary 7.17. For any u ∈ S ′(Rn),

(7.47) (p, q) ∈WFsc(u))⇐⇒ (q,−p) ∈WFsc(û).

Proof. I suppose a corollary should not need a proof, but still . . . .
The statement (7.47) is equivalent to

(7.48) (p, q) /∈WFsc(u)) =⇒ (q,−p) /∈WFsc(û)

since the reverse is the same by Fourier inversion. By (7.45) the con-
dition on the left is equivalent to u = u1 + u2 with p /∈ Css(u1),
q /∈ Css(û2). Hence equivalent to

(7.49) û = v1 + v2, v1 = û2, v̂2 = (2π)−nǔ1
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so q /∈ Css(v1), −p /∈ Css(v̂2) which proves (7.47). �

Now, we can exploit these notions to refine our conditions under
which pairing, the product and convolution can be defined.

Theorem 7.18. For u, v ∈ S ′(Rn)

(7.50) uv ∈ S ′(Rn) is unambiguously defined provided

(p, ω) ∈WFsc(u) ∩ (Bn × Sn−1) =⇒ (p,−ω) /∈WFsc(v)

and

(7.51) u ∗ v ∈ S ′(Rn) is unambiguously defined provided

(θ, q) ∈WFsc(u) ∩ (Sn−1 × Bn) =⇒ (−θ, q) /∈WFsc(v).

Proof. Let us consider convolution first. The hypothesis, (7.51)
means that for each θ ∈ Sn−1

(7.52)
{q ∈ Bn−1; (θ, q) ∈WFsc(u)} ∩ {q ∈ Bn−1; (−θ, q) ∈WFsc(v)} = ∅.

Now, the fact that WFsc is always a closed set means that (7.52) re-
mains true near θ in the sense that if U ⊂ Sn−1 is a sufficiently small
neighbourhood of θ then

(7.53) {q ∈ Bn−1;∃ θ′ ∈ U, (θ′, q) ∈WFsc(u)}
∩ {q ∈ Bn−1; ∃ θ′′ ∈ U, (−θ′′, q) ∈WFsc(v)} = ∅.

The compactness of Sn−1 means that there is a finite cover of Sn−1 by
such sets Uj. Now select a partition of unity ψi of Sn−1 which is not
only subordinate to this open cover, so each ψi is supported in one of
the Uj but satisfies the additional condition that

(7.54) supp(ψi) ∩ (− supp(ψi′)) 6= ∅ =⇒
supp(ψi) ∪ (− supp(ψi′)) ⊂ Uj for some j.

Now, if we set ui = (ψi)Ru, and vi′ = (ψi′)Rv, we know that u −
∑
i

ui

has compact support and similarly for v. Since convolution is already
known to be possible if (at least) one factor has compact support, it
suffices to define ui ∗ vi′ for every i, i′. So, first suppose that supp(ψi)∩
(− supp(ψi′)) 6= ∅. In this case we conclude from (7.54) that

(7.55) Css(ûi) ∩ Css(v̂i′) = ∅.

Thus we may define

(7.56) ûi ∗ vi′ = ûiv̂i′
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using (7.20). On the other hand if suppψi ∩ (− supp(ψi′)) = ∅ then

(7.57) Css(ui) ∩ (−Css(vi′)) ∩ Sn−1 = ∅

and in this case we can define ui ∗ vi′ using Lemma 7.10.
Thus with such a decomposition of u and v all terms in the convo-

lution are well-defined. Of course we should check that this definition
is independent of choices made in the decomposition. I leave this to
you.

That the product is well-defined under condition (7.50) now follows
if we define it using convolution, i.e. as

(7.58) ûv = f ∗ g, f = û, ǧ = v̂.

Indeed, using (7.47), (7.50) for u and v becomes (7.51) for f and g. �

8. Homogeneous distributions

Next time I will talk about homogeneous distributions. On R the
functions

xst =

{
xs x > 0
0 x < 0

where S ∈ R, is locally integrable (and hence a tempered distribution)
precisely when S > −1. As a function it is homogeneous of degree s.
Thus if a > 0 then

(ax)st = asxst .

Thinking of xst = µs as a distribution we can set this as

µs(ax)(ϕ) =

∫
µs(ax)ϕ(x) dx

=

∫
µs(x)ϕ(x/a)

dx

a

= asµs(ϕ) .

Thus if we define ϕa(x) = 1
a
ϕ(x

a
), for any a > 0, ϕ ∈ S(R) we can ask

whether a distribution is homogeneous:

µ(ϕa) = asµ(ϕ) ∀ ϕ ∈ S(R).

9. Operators and kernels

From here on a summary of parts of 18.155 used in 18.156 – to be
redistributed backwards With some corrections by incorporated.
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10. Fourier transform

The basic properties of the Fourier transform, tempered distribu-
tions and Sobolev spaces form the subject of the first half of this course.
I will recall and slightly expand on such a standard treatment.

11. Schwartz space.

The space S(Rn) of all complex-volumed functions with rapidly
decreasing derivatives of all orders is a complete metric space with
metric

(11.1)

d(u, v) =
∞∑
k=0

2−k
‖u− v‖(k)

1 + ‖u− v‖(k)

where

‖u‖(k) =
∑

|α|+|β|≤k

sup
z∈Rn
|zαDβ

z u(z)|.

Here and below I will use the notation for derivatives

Dα
z = Dα1

z1
. . . , Dαn

zn , Dzj =
1

i
1
∂

∂zj
.

These norms can be replaced by other equivalent ones, for instance
by reordering the factors

‖u‖′(k) =
∑

|α|+|β|≤k

sup
z∈Rn
|Dβ

z (zβu)|.

In fact it is only the cumulative effect of the norms that matters, so
one can use

(11.2) ‖u‖′′(k) = sup
z∈Rn
|〈z〉2k(∆ + 1)ku|

in (11.1) and the same topology results. Here

〈z〉2 = 1 + |z|2, ∆ =
n∑
j=1

D2
j

(so the Laplacian is formally positive, the geometers’ convention). It
is not quite so trivial to see that inserting (11.2) in (11.1) gives an
equivalent metric.

12. Tempered distributions.

The space of (metrically) continuous linear maps

(12.1) f : S(Rn) −→ C
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is the space of tempered distribution, denoted S ′(Rn) since it is the
dual of S(Rn). The continuity in (12.1) is equivalent to the estimates

(12.2) ∃ k, Ck > 0 s.t. |f(ϕ)| ≤ Ck‖ϕ‖(k) ∀ ϕ ∈ S(Rn).

There are several topologies which can be considered on S ′(Rn).
Unless otherwise noted we consider the uniform topology on S ′(Rn);
a subset U ⊂ S ′(Rn) is open in the uniform topology if for every
u ∈ U and every k sufficiently large there exists δk > 0 (both k and δk
depending on u) such that

v ∈ S ′(Rn), |(u− u)(ϕ) ≤ δk‖ϕ‖(k) ⇒ v ∈ U.
For linear maps it is straightforward to work out continuity condi-

tions. Namely

P : S(Rn) −→ S(Rm)

Q : S(Rn) −→ S ′(Rm)

R : S ′(Rn) −→ S(Rm)

S : S ′(Rn) −→ S ′(Rm)

are, respectively, continuous for the metric and uniform topologies if

∀ k ∃ k′, C s.t. ‖Pϕ‖(k) ≤ C‖ϕ‖(k′) ∀ ϕ ∈ S(Rn)

∃ k, k′, C s.t. |Qϕ(ψ)| ≤ C‖ϕ‖(k)‖ψ‖(k′)

∀ k, k′ ∃ C s.t. |u(ϕ)| ≤ ‖ϕ‖(k′) ∀ ϕ ∈ S(Rn)⇒ ‖Ru‖(k) ≤ C

∀ k′ ∃ k, C, C ′ s.t. ‖u(ϕ)‖(k) ≤ ‖ϕ‖(k)∀ ϕ ∈ S(Rn)⇒ |Su(ψ)| ≤ C ′‖ψ‖(k′) ∀ ψ ∈ S(Rn).

The particular case of R, for m = 0, where at least formally S(R0) = C,
corresponds to the reflexivity of S(Rn), that

R : S ′(Rn) −→ C is cts. iff ∃ ϕ ∈ S(Rn) s.t.

Ru = u(ϕ) i.e. (S ′(Rn))′ = S(Rn).

In fact another extension of the middle two of these results corresponds
to the Schwartz kernel theorem:

Q :S(Rn) −→ S ′(Rm) is linear and continuous

iff ∃ Q ∈ S ′(Rm × Rn) s.t. (Q(ϕ))(ψ) = Q(ψ � ϕ) ∀ ϕ ∈ S(Rm) ψ ∈ S(Rn).

R :S ′(Rn) −→ S(Rn) is linear and continuous

iff ∃ R ∈ S(Rm × Rn) s.t. (Ru)(z) = u(R(z, ·)).

Schwartz test functions are dense in tempered distributions

S(Rn) ↪→ S ′(Rn)
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where the standard inclusion is via Lebesgue measure

(12.3) S(Rn) 3 ϕ 7→ uϕ ∈ S ′(Rn), uϕ(ψ) =

∫
Rn
ϕ(z)ψ(z)dz.

The basic operators of differentiation and multiplication are transferred
to S ′(Rn) by duality so that they remain consistent with the (12.3):

Dzu(ϕ) = u(−Dzϕ)

fu(ϕ) = u(fϕ) ∀ f ∈ S(Rn)).

In fact multiplication extends to the space of function of polynomial
growth:

∀ α ∈ Nn
0 ∃ k s.t. |Dα

z f(z)| ≤ C〈z〉k.
Thus such a function is a multiplier on S(Rn) and hence by duality on
S ′(Rn) as well.

13. Fourier transform

Many of the results just listed are best proved using the Fourier
transform

F : S(Rn) −→ S(Rn)

Fϕ(ζ) = ϕ̂(ζ) =

∫
e−izζϕ(z)dz.

This map is an isomorphism that extends to an isomorphism of S ′(Rn)

F : S(Rn) −→ S(Rn)

Fϕ(Dzju) = ζjFu, F(zju) = −DζjFu

and also extends to an isomorphism of L2(Rn) from the dense subset

(13.1) S(Rn) ↪→ L2(R2)dense, ‖Fϕ‖2
L2 = (2π)n‖ϕ‖2

L2 .

14. Sobolev spaces

Plancherel’s theorem, (??), is the basis of the definition of the (stan-
dard, later there will be others) Sobolev spaces.

Hs(Rn) = {u ∈ S ′(Rn); (1 + |ζ|2)s/2û ∈ L2(Rn)}

‖u‖2
s =

∫
Rn

(1 + |ζ|2)s|û(ζ)|dζ,

where we use the fact that L2(Rn) ↪→ S ′(Rn) is a well-defined injection
(regarded as an inclusion) by continuous extension from (12.3). Now,

(14.1) Dα : Hs(Rn) −→ Hs−|α|(Rn) ∀ s, α.
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As well as this action by constant coefficient differential operators
we note here that multiplication by Schwartz functions also preserves
the Sobolev spaces – this is generalized with a different proof below.
I give this cruder version first partly to show a little how to estimate
convolution integrals.

Proposition 14.1. For any s ∈ R there is a continuous bilinear
map extending multiplication on Schwartz space

(14.2) S(Rn)×Hs(Rn) −→ Hs(Rn)

Proof. The product φu is well-defined for any φ ∈ S(Rn) and
u ∈ S ′(Rn). Since Schwartz functions are dense in the Sobolev spaces
it suffices to assume u ∈ S(Rn) and then to use continuity. The Fourier
transform of the product is the convolution of the Fourier transforms

(14.3) φ̂u = (2π)−nφ̂ ∗ û, φ̂ ∗ û(ξ) =

∫
Rn
φ̂(ξ − η)û(η)dη.

This is proved above, but let’s just note that in this case it is easy
enough since all the integrals are absolutely convergent and we can
compute the inverse Fourier transform of the convolution

(14.4)

(2π)−n
∫
dξeiz·ξ

∫
Rn
φ̂(ξ − η)û(η)dη

= (2π)−n
∫
dξeiz·(ξ−η)

∫
Rn
φ̂(ξ − η)eiz·ηû(η)dη

= (2π)−n
∫
dΞeiz·Ξ

∫
Rn
φ̂(Ξ)eiz·ηû(η)dη

= (2π)nφ(z)u(z).

First, take s = 0 and prove this way the, rather obvious, fact that
S is a space of multipliers on L2. Writing out the square of the abso-
lute value of the integral as the product with the complex conjugate,
estimating by the absolute value and then using the Cauchy-Schwarz
inequality gives what we want

(14.5)

|
∫
|
∫
ψ(ξ − η)û(η)dη|2dξ

≤
∫ ∫

|ψ(ξ − η1)||û(η1)||ψ(ξ − η2)||û(η2)|dη1dη2dξ

≤
∫ ∫

|ψ(ξ − η1)||ψ(ξ − η2)||û(η2)|2dη1dη2

≤ (

∫
|ψ|)2‖u‖2

L2 .
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Here, we have decomposed the integral as the product of |ψ(ξ−η1)| 12 |û(η1)||ψ(ξ−
η2)| 12 and the same term with the η variables exchanged. The two re-
sulting factors are then the same after changing variable so there is no
square-root in the integral.

Note that what we have really shown here is the well-known result:-

Lemma 14.2. Convolution gives is a continous bilinear map
(14.6)
L1(Rn)×L2(Rn) 3 (u, v) 7−→ u ∗ v ∈ L2(Rn), ‖u ∗ v‖L2 ≤ ‖u‖L1‖v‖L2 .

Now, to do the general case we need to take care of the weights in
the integral for the Sobolev norm

(14.7) ‖φu‖2
Hs =

∫
(1 + |ξ|2)s|φ̂u(ξ)|2dξ.

To do so, we divide the convolution integral into two regions:-

(14.8)
I = {η ∈ Rn; |ξ − η| ≥ 1

10
(|ξ|+ |η|)}

II = {η ∈ Rn; |ξ − η| ≤ 1

10
(|ξ|+ |η|)}.

In the first region φ(ξ − η) is rapidly decreasing in both variable, so

(14.9) |ψ(ξ − η)| ≤ CN(1 + |ξ|)−N(1 + |η|)−N

for any N and as a result this contribution to the integral is rapidly
decreasing:-

(14.10) |
∫
I

ψ(ξ − η)û(η)dη| ≤ CN(1 + |ξ|)−n‖u‖Hs

where the η decay is used to squelch the weight. So this certainly
constributes a term to ψ ∗ û with the bilinear bound.

To estimate the contribution from the second region, proceed as
above but the insert the weight after using the Cauchy-Schwartz inte-
quality
(14.11)∫

(1 + |ξ|2)s|
∫
II

ψ(ξ − η)û(η)dη|2dξ

≤
∫

(1 + |ξ|2)s
∫
II

∫
II

|ψ(ξ − η1)||û(η1)||ψ(ξ − η2)||û(η2)|dη1dη2

≤
∫ ∫

II

∫
II

(1 + |ξ|2)s(1 + |η2|2)−s|ψ(ξ − η1)||ψ(ξ − η2)|(1 + |η2|2)s|û(η2)|2dη1dη2

Exchange the order of integration and note that in region II the two
variables η2 and ξ are each bounded relative to the other. Thus the
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quotient of the weights is bounded above so the same argument applies
to estimate the integral by

(14.12) C

(∫
dΞ|ψ(Ξ)|

)2

‖u‖2
Hs

as desired. �

The Sobolev spaces are Hilbert spaces, so their duals are (conjugate)
isomorphic to themselves. However, in view of our inclusion L2(Rn) ↪→
S ′(Rn), we habitually identify

(Hs(Rn))′ = H−s(Rn),

with the ‘extension of the L2 paring’

(u, v) = “

∫
u(z)v(z)dz′′ = (2π)−n

∫
Rn
〈ζ〉sû · 〈ζ〉−sûdζ.

Note that then (14) is a linear, not a conjugate-linear, isomorphism
since (14) is a real pairing.

The Sobolev spaces decrease with increasing s,

Hs(Rn) ⊂ Hs′(Rn) ∀ s ≥ s′.

One essential property is the relationship between the ‘L2 derivatives’
involved in the definition of Sobolev spaces and standard derivatives.
Namely, the Sobolev embedding theorem:

s >
n

2
=⇒Hs(Rn) ⊂ C0

∞(Rn)

= {u;Rn −→ C its continuous and bounded}.

s >
n

2
+ k, k ∈ N =⇒Hs(Rn) ⊂ Ck∞(Rn)

def
= {u;Rn −→ C s.t. Dαu ∈ C0

∞(Rn) ∀ |α| ≤ k}.
For positive integral s the Sobolev norms are easily written in terms of
the functions, without Fourier transform:

u ∈ Hk(Rn)⇔ Dαu ∈ L2(Rn) ∀ |α| ≤ k

‖u‖2
k =

∑
|α|≤k

∫
Rn
|Dαu|2dz.

For negative integral orders there is a similar characterization by du-
ality, namely

H−k(Rn) = {u ∈ S ′(Rn) s.t. , ∃ uα ∈ L2(Rn), |α| ≥ k

u =
∑
|α|≤k

Dαuα}.
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In fact there are similar “Hölder” characterizations in general. For
0 < s < 1, u ∈ Hs(Rn) =⇒ u ∈ L2(Rn) and

(14.13)

∫
R2n

|u(z)− u(z′)|2

|z − z′|n+2s
dzdz′ <∞.

Then for k < s < k + 1, k ∈ N u ∈ Hs(R2) is equivalent to Dα ∈
Hs−k(Rn) for all |α| ∈ k, with corresponding (Hilbert) norm. Similar
realizations of the norms exist for s < 0.

One simple consequence of this is that

C∞∞(Rn) =
⋂
k

Ck∞(Rn) = {u;Rn −→ C s.t. |Dαu| is bounded ∀ α}

is a multiplier on all Sobolev spaces

C∞∞(Rn) ·Hs(Rn) = Hs(Rn) ∀ s ∈ R.

15. Weighted Sobolev spaces.

It follows from the Sobolev embedding theorem that

(15.1)
⋂
s

Hs(Rn) ⊂ C∞∞(Rn);

in fact the intersection here is quite a lot smaller, but nowhere near as
small as S(Rn). To discuss decay at infinity, as will definitely want to
do, we may use weighted Sobolev spaces.

The ordinary Sobolev spaces do not effectively define decay (or
growth) at infinity. We will therefore also set

Hm,l(Rn) = {u ∈ S ′(Rn); 〈z〉`u ∈ Hm(Rn)}, m, ` ∈ R,
= 〈z〉−`Hm(Rn) ,

where the second notation is supported to indicate that u ∈ Hm,l(Rn)
may be written as a product 〈z〉−`v with v ∈ Hm(Rn). Thus

Hm,`(Rn) ⊂ Hm′,`′(Rn) if m ≥ m′ and ` ≥ `′,

so the spaces are decreasing in each index. As consequences of the
Schwartz structure theorem

(15.2)

S ′(Rn) =
⋃
m,`

Hm,`(Rn)

S(Rn) =
⋂
m,`

Hm,`(Rn).

This is also true ‘topologically’ meaning that the first is an ‘inductive
limit’ and the second a ‘projective limit’.
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Similarly, using some commutation arguments

Dzj : Hm,`(Rn) −→ Hm−1,`(Rn), ∀ m, elll
×zj : Hm,`(Rn) −→ Hm,`−1(Rn).

Moreover there is symmetry under the Fourier transform

F : Hm,`(Rn) −→ H`,m(Rn) is an isomorphism ∀ m, `.
As with the usual Sobolev spaces, S(Rn) is dense in all the Hm,`(Rn)

spaces and the continuous extension of the L2 paring gives an identifi-
cation

Hm,`(Rn) ∼= (H−m,−`(Rn))′ fron

Hm,`(Rn)×H−m,−`(Rn) 3 u, v 7→

(u, v) = “

∫
u(z)v(z)dz′′.

Let Rs be the operator defined by Fourier multiplication by 〈ζ〉s :

(15.3) Rs : S(Rn) −→ S(Rn), R̂sf(ζ) = 〈ζ〉sf̂(ζ).

Lemma 15.1. If ψ ∈ S(Rn) then

(15.4) Ms = [ψ,Rs∗] : H t(Rn) −→ H t−s+1(Rn)

is bounded for each t.

Proof. Since the Sobolev spaces are defined in terms of the Fourier
transform, first conjugate and observe that (15.4) is equivalent to the
boundeness of the integral operator with kernel
(15.5)

Ks,t(ζ, ζ
′) = (1+|ζ|2)

t−s+1
2 ψ̂(ζ−ζ ′)

(
(1 + |ζ ′|2)

s
2 − (1 + |ζ|2)

s
2

)
(1+|ζ ′|2)−

t
2

on L2(Rn). If we insert the characteristic function for the region near
the diagonal

(15.6) |ζ − ζ ′| ≤ 1

4
(|ζ|+ |ζ ′|) =⇒ |ζ| ≤ 2|ζ ′|, |ζ ′| ≤ 2|ζ|

then |ζ| and |ζ ′| are of comparable size. Using Taylor’s formula

(15.7)

(1+|ζ ′|2)
s
2−(1+|ζ|2)

s
2 = s(ζ−ζ ′)·

∫ 1

0

(tζ+(1−tζ ′)
(
1 + |tζ + (1− t)ζ ′|2

) s
2
−1
dt

=⇒
∣∣(1 + |ζ ′|2)

s
2 − (1 + |ζ|2)

s
2

∣∣ ≤ Cs|ζ − ζ ′|(1 + |ζ|)s−1.

It follows that in the region (15.6) the kernel in (15.5) is bounded by

(15.8) C|ζ − ζ ′||ψ̂(ζ − ζ ′)|.
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In the complement to (15.6) the kernel is rapidly decreasing in ζ and ζ ′

in view of the rapid decrease of ψ̂. Both terms give bounded operators
on L2, in the first case using the same estimates that show convolution
by an element of S to be bounded. �

Lemma 15.2. If u ∈ Hs(Rn) and ψ ∈ C∞c (Rn) then

(15.9) ‖ψu‖s ≤ ‖ψ‖L∞‖u‖s + C‖u‖s−1

where the constant depends on s and ψ but not u.

Proof. This is really a standard estimate for Sobolev spaces. Re-
call that the Sobolev norm is related to the L2 norm by

(15.10) ‖u‖s = ‖〈D〉su‖L2 .

Here 〈D〉s is the convolution operator with kernel defined by its Fourier
transform

(15.11) 〈D〉su = Rs ∗ u, R̂s(ζ) = (1 + |ζ|2)
s
2 .

To get (15.9) use Lemma 15.1.
From (15.4), (writing 0 for the L2 norm)

(15.12) ‖ψu‖s = ‖Rs ∗ (ψu)‖0 ≤ ‖ψ(Rs ∗ u)‖0 + ‖Msu‖0

≤ ‖ψ‖L∞‖Rsu‖0 + C‖u‖s−1 ≤ ‖ψ‖L∞‖u‖s + C‖u‖s−1.

This completes the proof of (15.9) and so of Lemma 15.2. �

16. Multiplicativity

Of primary importance later in our treatment of non-linear prob-
lems is some version of the multliplicative property

(16.1) As(Rn) =

{
Hs(Rn) ∩ L∞(Rn) s ≤ n

2

Hs(Rn) s > n
2

is a C∞ algebra.

Here, a C∞ algebra is an algebra with an additional closure property.
Namely if F : RN −→ C is a C∞ function vanishing at the origin and
u1, . . . , uN ∈ As are real-valued then

F (u1, . . . , un) ∈ As.

I will only consider the case of real interest here, where s is an
integer and s > n

2
. The obvious place to start is

Lemma 16.1. If s > n
2

then

(16.2) u, v ∈ Hs(Rn) =⇒ uv ∈ Hs(Rn).
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Proof. We will prove this directly in terms of convolution. Thus,
in terms of weighted Sobolev spaces u ∈ Hs(Rn) = Hs,0(Rn) is equiva-
lent to û ∈ H0,s(Rn). So (16.2) is equivalent to

(16.3) u, v ∈ H0,s(Rn) =⇒ u ∗ v ∈ H0,s(Rn).

Using the density of S(Rn) it suffices to prove the estimate

(16.4) ‖u ∗ v‖H0,s ≤ Cs‖u‖H0,s‖v‖H0,s for s >
n

2
.

Now, we can write u(ζ) = 〈ζ〉−su′ etc and convert (16.4) to an estimate
on the L2 norm of

(16.5) 〈ζ〉−s
∫
〈ξ〉−su′(ξ)〈ζ − ξ〉−sv′(ζ − ξ)dξ

in terms of the L2 norms of u′ and v′ ∈ S(Rn).
Writing out the L2 norm as in the proof of Lemma 15.1 above, we

need to estimate the absolute value of
(16.6)∫ ∫ ∫

dζdξdη〈ζ〉2s〈ξ〉−su1(ξ)〈ζ−ξ〉−sv1(ζ−ξ)〈η〉−su2(η)〈ζ−η〉−sv2(ζ−η)

in terms of the L2 norms of the ui and vi. To do so divide the integral
into the four regions,

(16.7)

|ζ − ξ| ≤ 1

4
(|ζ|+ |ξ|), |ζ − η| ≤ 1

4
(|ζ|+ |η|)

|ζ − ξ| ≤ 1

4
(|ζ|+ |ξ|), |ζ − η| ≥ 1

4
(|ζ|+ |η|)

|ζ − ξ| ≥ 1

4
(|ζ|+ |ξ|), |ζ − η| ≤ 1

4
(|ζ|+ |η|)

|ζ − ξ| ≥ 1

4
(|ζ|+ |ξ|), |ζ − η| ≥ 1

4
(|ζ|+ |η|).

Using (15.6) the integrand in (16.6) may be correspondingly bounded
by

(16.8)

C〈ζ − η〉−s|u1(ξ)||v1(ζ − ξ)| · 〈ζ − ξ〉−s|u2(η)||v2(ζ − η)|
C〈η〉−s|u1(ξ)||v1(ζ − ξ)| · 〈ζ − ξ〉−s|u2(η)||v2(ζ − η)|
C〈ζ − η〉−s|u1(ξ)||v1(ζ − ξ)| · 〈ξ〉−s|u2(η)||v2(ζ − η)|
C〈η〉−s|u1(ξ)|v1(ζ − ξ)| · 〈ξ〉−s|u2(η)||v2(ζ − η)|.

Now applying Cauchy-Schwarz inequality, with the factors as indicated,
and changing variables appropriately gives the desired estimate. �

Next, we extend this argument to (many) more factors to get the
following result which is close to the Gagliardo-Nirenberg estimates
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(since I am concentrating here on L2 methods I will not actually discuss
the latter).

Lemma 16.2. If s > n
2
, N ≥ 1 and αi ∈ Nk

0 for i = 1, . . . , N are
such that

N∑
i=1

|αi| = T ≤ s

then
(16.9)

ui ∈ Hs(Rn) =⇒ U =
N∏
i=1

Dαiui ∈ Hs−T (Rn), ‖U‖Hs−T ≤ CN

N∏
i=1

‖ui‖Hs .

Proof. We proceed as in the proof of Lemma 16.1 using the Fourier
transform to replace the product by the convolution. Thus it suffices
to show that

(16.10) u1 ∗ u2 ∗ u3 ∗ · · · ∗ uN ∈ H0,s−T if ui ∈ H0,s−αi .

Writing out the convolution symmetrically in all variables,

(16.11) u1 ∗ u2 ∗ u3 ∗ · · · ∗ uN(ζ) =

∫
ζ=

∑
i
ξi

u1(ξ1) · · ·uN(ξN)

it follows that we need to estimate the L2 norm in ζ of

(16.12) 〈ζ〉s−T
∫
ζ=

∑
i
ξi

〈ξ1〉−s+a1v1(ξ1) · · · 〈ξN〉−s+aNvN(ξN)

for N factors vi which are in L2 with the ai = |α|i non-negative integers
summing to T ≤ s. Again writing the square as the product with the
complex conjuage it is enough to estimate integrals of the type

(16.13)

∫
{(ξ,η)∈R2N ;

∑
i
ξi=

∑
i
ηi}
〈
∑
i

ξ〉2s−2T 〈ξ1〉−s+a1

v1(ξ1) · · · 〈ξN〉−s+aNvN(ξN)〈η1〉−s+a1 v̄1(η1) · · · 〈ηN〉−s+aN v̄N(ηN).

This is really an integral over R2N−1 with respect to Lebesgue measure.
Applying Cauchy-Schwarz inequality the absolute value is estimated by

(16.14)

∫
{(ξ,η)∈R2N ;

∑
i
ξi=

∑
i
ηi}

N∏
i=1

|vi(ξi)|2〈
∑
l

ηl〉2s−2T

N∏
i=1

〈ηi〉−2s+2ai

The domain of integration, given by
∑
i

ηi =
∑
i

ξi, is covered by the

finite number of subsets Γj on which in addition |ηj| ≥ |ηi|, for all i.
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On this set we may take the variables of integration to be ηi for i 6= j
and the ξl. Then |ηi| ≥ |

∑
l

ηl|/N so the second part of the integrand

in (16.14) is estimated by
(16.15)

〈ηj〉−2s+2aj〈
∑
l

ηl〉2s−2T
∏
i 6=j

〈ηi〉−2s+2ai ≤ CN〈ηj〉−2T+2aj
∏
i 6=j

〈ηi〉−2s+2ai ≤ C ′N
∏
i 6=j

〈ηi〉−2s

Thus the integral in (16.14) is finite and the desired estimate follows.
�

Proposition 16.3. If F ∈ C∞(Rn×R) and u ∈ Hs(Rn) for s > n
2

an integer then

(16.16) F (z, u(z)) ∈ Hs
loc(Rn).

Proof. Since the result is local on Rn we may multiply by a com-
pactly supported function of z. In fact since u ∈ Hs(Rn) is bounded we
also multiply by a compactly supported function in R without changing
the result. Thus it suffices to show that

(16.17) F ∈ C∞c (Rn × R) =⇒ F (z, u(z)) ∈ Hs(Rn).

Now, Lemma 16.2 can be applied to show that F (z, u(z)) ∈ Hs(Rn).
Certainly F (z, u(z)) ∈ L2(Rn) since it is continuous and has compact
support. Moreover, differentiating s times and applying the chain rule
gives

(16.18) DαF (z, u(z)) =
∑

Fα1,...,αN (z, u(z))Dα1u · · ·DαNu

where the sum is over all (finitely many) decomposition with
N∑
i=1

αi ≤

α and the F·(z, u) are smooth with compact support, being various
derivitives of F (z, u). Thus it follows from Lemma 16.2 that all terms
on the right are in L2(Rn) for |α| ≤ s. �

Note that slightly more sophisticated versions of these arguments
give the full result (16.1) but Proposition 16.3 suffices for our purposes
below.

17. Some bounded operators

Lemma 17.1. If J ∈ Ck(Ω2) is properly supported then the operator
with kernel J (also denoted J) is a map

(17.1) J : Hs
loc(Ω) −→ Hk

loc(Ω) ∀ s ≥ −k.


