
CHAPTER 4

Differential and Integral operators

The last part of the course includes some applications of Hilbert space and the
spectral theorem – the completeness of the Fourier basis, some ‘Sturm-Liouville’
theory, which is to say the spectral theory for second-order differential operators on
an interval or the circle (this case is traditionally called Hill’s equation) and enough
of a treatment of the eigenfunctions for the harmonic oscillator to show that the
Fourier transform is an isomorphism on L2(R). Once one has all this, one can do a
lot more, but there is no time left. Such is life.

1. Fourier series

Let us now try applying our knowledge of Hilbert space to a concrete Hilbert
space such as L2(a, b) for a finite interval (a, b) ⊂ R. Any such interval with b > a
can be mapped by a linear transformation onto (0, 2π) and so we work with this
special interval. You showed that L2(a, b) is indeed a Hilbert space. One of the
reasons for developing Hilbert space techniques originally was precisely the following
result.

Theorem 4.1. If u ∈ L2(0, 2π) then the Fourier series of u,

(4.1)
1

2π

∑
k∈Z

cke
ikx, ck =

∫
(0,2π)

u(x)e−ikxdx

converges in L2(0, 2π) to u.

Notice that this does not say the series converges pointwise, or pointwise almost
everywhere. In fact it is true that the Fourier series of a function in L2(0, 2π)
converges almost everywhere to u, but it is hard to prove! In fact it is an important
result of L. Carleson. Here we are just claiming that

(4.2) lim
n→∞

∫
|u(x)− 1

2π

∑
|k|≤n

cke
ikx|2 = 0

for any u ∈ L2(0, 2π).
Our abstract Hilbert space theory has put us quite close to proving this. First

observe that if e′k(x) = exp(ikx) then these elements of L2(0, 2π) satisfy

(4.3)

∫
e′ke
′
j =

∫ 2π

0

exp(i(k − j)x) =

{
0 if k 6= j

2π if k = j.

Thus the functions

(4.4) ek =
e′k
‖e′k‖

=
1√
2π
eikx
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116 4. DIFFERENTIAL AND INTEGRAL OPERATORS

form an orthonormal set in L2(0, 2π). It follows that (4.1) is just the Fourier-Bessel
series for u with respect to this orthonormal set:-

(4.5) ck =
√

2π(u, ek) =⇒ 1

2π
cke

ikx = (u, ek)ek.

So, we already know that this series converges in L2(0, 2π) thanks to Bessel’s in-
equality. So ‘all’ we need to show is

Proposition 4.1. The ek, k ∈ Z, form an orthonormal basis of L2(0, 2π), i.e.
are complete:

(4.6)

∫
ueikx = 0 ∀ k =⇒ u = 0 in L2(0, 2π).

This however, is not so trivial to prove. An equivalent statement is that the fi-
nite linear span of the ek is dense in L2(0, 2π). I will prove this using Fejér’s method.
In this approach, we check that any continuous function on [0, 2π] satisfying the
additional condition that u(0) = u(2π) is the uniform limit on [0, 2π] of a sequence
in the finite span of the ek. Since uniform convergence of continuous functions cer-
tainly implies convergence in L2(0, 2π) and we already know that the continuous
functions which vanish near 0 and 2π are dense in L2(0, 2π) this is enough to prove
Proposition 4.1. However the proof is a serious piece of analysis, at least it seems so
to me! There are other approaches, for instance we could use the Stone-Weierstrass
Theorem; rather than do this we will deduce the Stone-Weierstrass Theorem from
Proposition 4.1. Another good reason to proceed directly is that Fejér’s approach
is clever and generalizes in various ways as we will see.

So, the problem is to find the sequence in the span of the ek which converges
to a given continuous function and the trick is to use the Fourier expansion that
we want to check! The idea of Cesàro is close to one we have seen before, namely
to make this Fourier expansion ‘converge faster’, or maybe better. For the moment
we can work with a general function u ∈ L2(0, 2π) – or think of it as continuous if
you prefer. The truncated Fourier series of u is a finite linear combination of the
ek :

(4.7) Un(x) =
1

2π

∑
|k|≤n

(

∫
(0,2π)

u(t)e−iktdt)eikx

where I have just inserted the definition of the ck’s into the sum. Since this is a
finite sum we can treat x as a parameter and use the linearity of the integral to
write it as

(4.8) Un(x) =

∫
(0,2π)

Dn(x− t)u(t), Dn(s) =
1

2π

∑
|k|≤n

eiks.

Now this sum can be written as an explicit quotient, since, by telescoping,

(4.9) 2πDn(s)(eis/2 − e−is/2) = ei(n+ 1
2 )s − e−i(n+ 1

2 )s.

So in fact, at least where s 6= 0,

(4.10) Dn(s) =
ei(n+ 1

2 )s − e−i(n+ 1
2 )s

2π(eis/2 − e−is/2)

and the limit as s→ 0 exists just fine.
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As I said, Cesàro’s idea is to speed up the convergence by replacing Un by its
average

(4.11) Vn(x) =
1

n+ 1

n∑
l=0

Ul.

Again plugging in the definitions of the Ul’s and using the linearity of the integral
we see that

(4.12) Vn(x) =

∫
(0,2π)

Sn(x− t)u(t), Sn(s) =
1

n+ 1

n∑
l=0

Dl(s).

So again we want to compute a more useful form for Sn(s) – which is the Fejér
kernel. Since the denominators in (4.10) are all the same,

(4.13) 2π(n+ 1)(eis/2 − e−is/2)Sn(s) =

n∑
l=0

ei(l+
1
2 )s −

n∑
l=0

e−i(l+
1
2 )s.

Using the same trick again,

(4.14) (eis/2 − e−is/2)

n∑
l=0

ei(l+
1
2 )s = ei(n+1)s − 1

so

(4.15)

2π(n+ 1)(eis/2 − e−is/2)2Sn(s) = ei(n+1)s + e−i(n+1)s − 2

=⇒ Sn(s) =
1

n+ 1

sin2( (n+1)
2 s)

2π sin2( s2 )
.

Now, what can we say about this function? One thing we know immediately is
that if we plug u = 1 into the discussion above, we get Un = 1 for n ≥ 0 and hence
Vn = 1 as well. Thus in fact

(4.16)

∫
(0,2π)

Sn(x− ·) = 1, ∀ x ∈ (0, 2π).

Looking directly at (4.15) the first thing to notice is that Sn(s) ≥ 0. Also, we
can see that the denominator only vanishes when s = 0 or s = 2π in [0, 2π]. Thus
if we stay away from there, say s ∈ (δ, 2π − δ) for some δ > 0 then, sin(t) being a
bounded function,

(4.17) |Sn(s)| ≤ (n+ 1)−1Cδ on (δ, 2π − δ).

We are interested in how close Vn(x) is to the given u(x) in supremum norm,
where now we will take u to be continuous. Because of (4.16) we can write

(4.18) u(x) =

∫
(0,2π)

Sn(x− t)u(x)

where t denotes the variable of integration (and x is fixed in [0, 2π]). This ‘trick’
means that the difference is

(4.19) Vn(x)− u(x) =

∫
(0,2π)

Sn(x− t)(u(t)− u(x)).
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For each x we split this integral into two parts, the set Γ(x) where x− t ∈ [0, δ] or
x− t ∈ [2π − δ, 2π] and the remainder. So
(4.20)

|Vn(x)− u(x)| ≤
∫

Γ(x)

Sn(x− t)|u(t)− u(x)|+
∫

(0,2π)\Γ(x)

Sn(x− t)|u(t)− u(x)|.

Now on Γ(x) either |t−x| ≤ δ – the points are close together – or t is close to 0 and
x to 2π so 2π−x+ t ≤ δ or conversely, x is close to 0 and t to 2π so 2π− t+x ≤ δ.
In any case, by assuming that u(0) = u(2π) and using the uniform continuity of a
continuous function on [0, 2π], given ε > 0 we can choose δ so small that

(4.21) |u(x)− u(t)| ≤ ε/2 on Γ(x).

On the complement of Γ(x) we have (4.17) and since u is bounded we get the
estimate

(4.22) |Vn(x)− u(x)| ≤ ε/2
∫

Γ(x)

Sn(x− t) + (n+ 1)−1q(δ) ≤ ε/2 + (n+ 1)−1q(δ)

where q(δ) = 2 sin(δ/2)−2 sup |u| is a positive constant depending on δ (and u).
Here the fact that Sn is non-negative and has integral one has been used again to
estimate the integral of Sn(x− t) over Γ(x) by 1. Having chosen δ to make the first
term small, we can choose n large to make the second term small and it follows
that

(4.23) Vn(x)→ u(x) uniformly on [0, 2π] as n→∞

under the assumption that u ∈ C([0, 2π]) satisfies u(0) = u(2π).
So this proves Proposition 4.1 subject to the density in L2(0, 2π) of the contin-

uous functions which vanish near (but not of course in a fixed neighbourhood of)
the ends. In fact we know that the L2 functions which vanish near the ends are
dense since we can chop off and use the fact that

(4.24) lim
δ→0

(∫
(0,δ)

|f |2 +

∫
(2π−δ,2π)

|f |2
)

= 0.

This proves Theorem 4.1.
Notice that from what we have shown it follows that the finite linear combi-

nations of the exp(ikx) are dense in the subspace of C([0, 2π]) consisting of the
functions with equal values at the ends. Taking a general element u ∈ C([0, 2π] we
can choose constants so that

(4.25) v = u− c− dx ∈ C([0, 2π]) satisfies v(0) = v(2π) = 0.

Indeed we just need to take c = u(0), d = u(1) − c. Then we know that v is the
uniform limit of a sequence of finite sums of the exp(ikx). However, the Taylor
series

(4.26) eikx =
∑
l

(ik)l

l!
xl

converges uniformly to eikx in any (complex) disk. So it follows in turn that the
polynomials are dense

Theorem 4.2 (Stone-Weierstrass). The polynomials are dense in C([a, b]) for
any a < b, in the uniform topology.
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Make sure you understand the change of variable argument to get to a general
(finite) interval.

2. Toeplitz operators

Although the convergence of Fourier series was stated above for functions on an
interval (0, 2π) it can be immediately reinterpreted in terms of periodic functions
on the line, or equivalently functions on the circle S. Namely a 2π-periodic function

(4.27) u : R −→ C, u(x+ 2π) = u(x) ∀ x ∈ R
is uniquely determined by its restriction to [0, 2π) by just iterating to see that

(4.28) u(x+ 2πk) = u(x), x ∈ [0, 2π), k ∈ Z.
Conversely a function on [0, 2π) determines a 2π-periodic function this way. Thus
a function on the circle

(4.29) S = {z ∈ C : |z| = 1}
is the same as a periodic function on the line in terms of the standard angular
variable

(4.30) S 3 z = e2πiθ, θ ∈ [0, 2π).

In particular we can identify L2(S) with L2(0, 2π) in this way – since the missing
end-point corresponds to a set of measure zero. Equivalently this identifies L2(S)
as the locally square integrable functions on R which are 2π-periodic.

Since S is a compact Lie group (what is that you say? Look it up!) this brings
us into the realm of harmonic analysis. Just restating the results above for any
u ∈ L2(S) the Fourier series (thinking of each exp(ikθ) as a 2π-periodic function
on the line) converges in L2(I) for any bounded interval

(4.31) u(x) =
∑
k∈Z

ake
ikx, ak =

∫
(0,2π)

u(x)e−ikxdx.

After this adjustment of attitude, we follow G.H. Hardy (you might enjoy ”A
Mathematician’s Apology”) in thinking about:

Definition 4.1. Hardy space is

(4.32) H = {u ∈ L2(S); ak = 0 ∀ k < 0}.

There are lots of reasons to be interested in H ⊂ L2(S) but for the moment
note that it is a closed subspace – since it is the intersection of the null spaces of the
continuous linear functionals H 7−→ ak, k < 0. Thus there is a unique orthogonal
projection

(4.33) πH : L2(S) −→ H

with range H.
If we go back to the definition of L2(S) we can see that a continuous function α ∈

C(S) defines a bounded linear operator on L2(S) by multiplication. It is invertible
if and only if α(θ) 6= 0 for all θ ∈ [0, 2π) which is the same as saying that α is a
continuous map

(4.34) α : S −→ C∗ = C \ {0}.
For such a map there is a well-defined ‘winding number’ giving the number of

times that the curve in the plane defined by α goes around the origin. This is easy
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to define using the properties of the logarithm. Suppose that α is once continuously
differentiable and consider

(4.35)
1

2πi

∫
[0,2π]

α−1 dα

dθ
dθ = wn(α).

If we can write

(4.36) α = exp(2πif(θ))

with f : [0, 2π] −→ C continuous then necessarily f is differentiable and

(4.37) wn(α) =

∫ 2π

0

df

dθ
dθ = f(2π)− f(0) ∈ Z

since exp(2πi(f(0) − f(2π)))) = 1. In fact, even for a general α ∈ C(S;C∗), it is
always possible to find a continuous f satisfying (4.36), using the standard proper-
ties of the logarithm as a local inverse to exp, but ill-determined up to addition of
integral multiples of 2πi. Then the winding number is given by the last expression
in (4.37) and is independent of the choice of f.

Definition 4.2. A Toeplitz operator on H is an operator of the form

(4.38) Tα = πHαπH : H −→ H, α ∈ C(S).

The result I want is one of the first ‘geometric index theorems’ – it is a very
simple case of the celebrated Atiyah-Singer index theorem (which it much predates).

Theorem 4.3 (Toeplitz). If α ∈ C(S;C∗) then the Toeplitz operator (4.38) is
Fredholm (on the Hardy space H) with index

(4.39) ind(Tα) = −wn(α)

given in terms of the winding number of α.

Proof. First we need to show that Tα is indeed a Fredholm operator. To do
this we decompose the original, multiplication, operator into four pieces

(4.40) α = Tα +Hα(Id−H) + (Id−H)αH + (Id−H)α(Id−H)

which you can think of a 2× 2 matrix corresponding to writing

(4.41)

L2(S) = H ⊕H−, H− = (Id−H)L2(S),

α =

(
Tα Hα(Id−H)

(Id−H)αH (Id−H)α(Id−H)

)
.

Now, we will show that the two ‘off-diagonal’ terms are compact operators
(on L2(S)). Consider first (Id−H)αH. Now, we showed above, as a form of the
Stone-Weierstrass Theorem, that the finite Fourier sums are dense in C(S) in the
supremum norm. This is not the convergence of the Fourier series but there is a
sequence αk → α in supremum norm, where each

(4.42) αk =

Nk∑
j=−Nk

akje
ijθ.

It follows that

(4.43) ‖(Id−H)αkH − (Id−H)αH‖B(L2(S)) → 0.

Now by (4.42) each (Id−H)αkH is a finite linear combination of terms

(4.44) (Id−H)eijθH, |j| ≤ Nk.
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However, each of these operators is of finite rank. They actually vanish if j ≥ 0
and for j < 0 the rank is exactly −j. So each (Id−H)αkH is of finite rank and
hence (Id−H)αH is compact. A very similar argument works for Hα(Id−H) (or
you can use adjoints).

Now, again assume that α 6= 0. Then the whole multiplication operator in
(4.40) is invertible. If we remove the two compact terms we see that

(4.45) Tα + (Id−H)α(Id−H) is Fredholm.

Now the first part maps H to H and the second maps H− to H−. It follows that
the null space and range of Tα are the projections of the null space and range of the
sum (4.45) – so it must have finite dimensional null space and closed range with a
finite-dimensional complement as a map from H to itself:-

(4.46) α ∈ C(S;C∗) =⇒ Tα is Fredholm in B(H).

So it remains to compute its index. Note that the index of the sum (4.45)
acting on L2(S) vanishes, so that does not really help! The key here is the stability
of both the index and the winding number.

Lemma 4.1. If α ∈ C(S;C∗) has winding number p ∈ Z then there is a curve

(4.47) αt : [0, 1] −→ C(S;C∗), α1 = α, α0 = eipθ.

Proof. If you take a continuous function f : [0, 2π] −→ C then

(4.48) α = exp(2πif) ∈ C(S;C∗) iff f(2π) = f(0) + p, p ∈ Z

(so that α(2π) = α(0)) where p is precisely the winding number of α. So to construct
a continuous family as in (4.47) we can deform f instead provided we keep the
difference between the end values constant. Clearly

(4.49) αt = exp(2πift), ft(θ) = p
θ

2π
(1− t) + f(θ)t, t ∈ [0, 1]

does this since ft(0) = f(0)t, ft(2π) = p(1 − t) + f(2π)t = f(0)t + p, f0 = p θ
2π ,

f1(θ) = f(θ). �

It was shown above that the index of a Fredholm operator is constant on the
components – so along any norm continuous curve such as Tαt where αt is as in
(4.47). Thus the index of Tα, where α has winding number p is the same as the
index of the Toeplitz operator defined by exp(ipθ), which has the same winding
number (note that the winding number is also constant under deformations of α).
So we are left to compute the index of the operator HeipθH acting on H. This is
just a p-fold ‘shift up’. If p ≤ 0 it is actually surjective and has null space spanned
by the exp(ijθ) with 0 ≤ j < −p – since these are mapped to exp(i(j + p)θ) and
hence killed by H. Thus indeed the index of Tα for α = exp(ipθ) is k in thus case.
For p > 0 we can take the adjoint so we have proved Theorem 4.3. �

Why is this important? Suppose you have a function α ∈ C(S;C∗) and you
know it has winding number −k for k ∈ N. Then you know that the operator Tα
must have null space at least of dimension k. It could be bigger but this is an
existence theorem hence useful. The index is generally relatively easy to compute
and from that one can tell quite a lot about a Fredholm operator.
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3. Cauchy problem

Most, if not all, of you will have had a course on ordinary differential equations
so the results here are probably familiar to you at least in outline. I am not going
to try to push things very far but I will use the Cauchy problem to introduce ‘weak
solutions’ of differential equations.

So, here is a form of the Cauchy problem. Let me stick to the standard interval
we have been using but as usual it does not matter. So we are interested in solutions
u of the equation, for some positive integer k

(4.50)

Pu(x) =
dku

dxk
(x) +

k−1∑
j=0

ak(x)
dju

dxj
(x) = f(x) on [0, 2pi]

dju

dxj
(0) = 0, j = 0, . . . , k − 1

aj ∈ Cj([0, 2π]), j = 0, . . . , k − 1.

So, the aj are fixed (corresponding if you like to some physical system), u is the
‘unknown’ function and f is also given. Recall that Cj([0, 2π]) is the space (complex
valued here) of functions on [0, 2π] which have j continuous derivatives. The middle
line consists of the ‘homogeneous’ Cauchy conditions – also called initial conditions –
where homogeneous just means zero. The general case of non-zero initial conditions
follows from this one.

If we want the equation to make ‘classical sense’ we need to assume for instance
that u has continuous derivatives up to order k and f is continuous. I have written
out the first term, involving the highest order of differentiation, in (4.50) separately
to suggest the following observation. Suppose u is just k times differentiable, but
without assuming the kth derivative is continous. The equation still makes sense
but if we assume that f is continuous then it actually follows that u is k times
continuously differentiable. In fact each of the terms in the sum is continuous, since
this only invovles derivatives up to order k− 1 multiplied by continuous functions.
We can (mentally if you like) move these to the right side of the equation, so together
with f this becomes a continuous function. But then the equation itself implies

that dku
dxk

is continuous and so u is actually k times continuously differentiable. This
is a rather trivial example of ‘elliptic’ regularity which we will push much further.

So, the problem is to prove

Theorem 4.4. For each f ∈ C([0, 2π]) there is a unique k times continuously
differentiable solution, u, to (4.50).

Note that in general there is no way of ‘writing the solution down’. We can
show it exists, and is unique, and we can say a lot about it but there is no formula
– although we will see that it is the sum of a reasonable series.

How to proceed? There are many ways but to adopt the one I want to use
I need to manipulate the equation in (4.50). There is a certain discriminatory
property of the way I have written the equation. Although it seems rather natural,
writing the ‘coefficients’ ak on the left involves an element of ‘handism’ if that is a
legitimate concept. Instead we could try for the ‘rigthist’ approach and look at the
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similar equation

(4.51)

dku

dxk
(x) +

k−1∑
j=0

dj(bj(x)u)

dxj
(x) = f(x) on [0, 2π]

dju

dxj
(0) = 0, j = 0, . . . , k − 1

bj ∈ Cj([0, 2π]), j = 0, . . . , k − 1.

As already written in (4.50) we think of P as an operator, sending u to this sume.

Lemma 4.2. For any functions aj ∈ Cj([0, 2π]) there are unique functions bj ∈
Cj([0, 2π]) so that (4.51) gives the same operator as (4.50).

Proof. Here we can simply write down a formula for the bj in terms of the
aj . Namely the product rule for derivatives means that

(4.52)
dj(bj(x)u)

dxj
=

j∑
p=0

(
j

p

)
dj−pbj
dxj−p

· d
pu

dxp
.

If you are not quite confident that you know this, you do know it for j = 1 which
is just the usual product rule. So proceed by induction over j and observe that the
formul for j + 1 follows from the formula for j using the properties of the binomial
coefficients.

Pulling out the coefficients of a fixed derivative of u show that we need bj to
satisfy

(4.53) ap = bp +

k−1∑
j=p+1

(
j

p

)
dj−pbj
dxj−p

.

This shows the uniquness since we can recover the aj from the bj . On the other
hand we can solve (4.53) for the bj too. The ‘top’ equation says ak−1 = bk−1 and
then successive equations determine bp in terms of ap and the bj with j > p which
we already know iteratively.

Note that the bj ∈ Cj([0, 2π]). �

So, what has been achieved by ‘writing the coefficients on the right’? The
important idea is that we can solve (4.50) in one particular case, namely when all
the aj (or equivalently bj) vanish. Then we would just integrate k times. Let us
denote Riemann integration by

(4.54) I : C([0, 2π]) −→ C([0, 2π]), If(x) =

∫ x

0

f(s)ds.

Of course we can also think of this as Lebesgue integration and then we know for
instance that

(4.55) I : L2(0, 2π) −→ C([0, 2π])

is a bounded linear operator. Note also that

(4.56) (If)(0) = 0

satisfies the first of the Cauchy conditions.



124 4. DIFFERENTIAL AND INTEGRAL OPERATORS

Now, we can apply the operator I to (4.51) and repeat k times. By the funda-
mental theorem of calculus

(4.57) u ∈ Cj([0, 2π]),
dpu

dxp
(0) = 0, p = 0, . . . , j =⇒ Ij(

dju

dxj
) = u.

Thus (4.51) becomes

(4.58) (Id +B)u = u+

k−1∑
j=0

Ik−j(bju) = Ikf.

Notice that this argument is reversible. Namely if u ∈ Ck([0, 2π]) satisfies (4.58)
for f ∈ C([0, 2π]) then u ∈ Ck([0, 2π]) does indeed satisfy (4.58). In fact even more
is true

Proposition 4.2. The operator Id +B is invertible on L2(0, 2π) and if f ∈
C([0, 2π]) then u = (Id +B)−1Ikf ∈ Ck([0, 2π]) is the unique solution of (4.51).

Proof. From (4.58) we see that B is given as a sum of operators of the form
Ip ◦ b where b is multiplcation by a continuous function also denoted b ∈ C([0, 2π])
and p ≥ 1. Writing out Ip as an iterated (Riemann) integral

(4.59) Ipv(x) =

∫ x

0

∫ y1

0

· · ·
∫ yp−1

0

v(yp)dyp · · · dy1.

For the case of p = 1 we can write

(4.60) (I · bk−1)v(x) =

∫ 2π

0

βk−1(x, t)v(t)dt, βk−2(x, t) = H(x− t)bk−1(x)

where the Heaviside function restricts the integrand to t ≤ x. Similarly in the next
case by reversing the order of integration

(4.61) (I2 · bk−2)v(x) =

∫ x

0

∫ s

0

b(t)v(t)dtds

=

∫ x

0

∫ x

bk−2(t)v(t)dsdt =

∫ 2π

0

βk−2(x, t)v(t)dt,

βk−2 = (x− t)+bk−2(x).

In general

(4.62) (Ip · bk−p)v(x) =

∫ 2π

0

βk−p(x, t)v(t)dt, βk−p =
1

(p− 1)!
(x− t)p−1

+ bk−p(x).

The explicit formula here is not that important, but (throwing away a lot of infor-
mation) all the β∗(t, x) have the property that they are of the form

(4.63) β(x, t) = H(x− t)e(x, t), e ∈ C([0, 2π]2).

This is a Volterra operator

(4.64) Bv(x) =

∫ 2π

0

β(x, t)v(t)

with β as in (4.63).
So now the point is that for any Volterra operator B, Id +B is invertible on

L2(0, 2π). In fact we can make a stronger statement that

(4.65) B Volterra =⇒
∑
j

(−1)jBj converges in B(L2(0, 2π)).
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This is just the Neumann series, but notice we are not claiming that ‖B‖ < 1 which
would give the convergence as we know from earlier. Rather the key is that the
powers of B behave very much like the operators Ik computed above.

Lemma 4.3. For a Volterra operator in the sense of (4.63) and (4.64)
(4.66)

Bjv(x) =

∫ 2π

0

H(x−t)ej(x, t)v(t), ej ∈ C([0, 2π]2), ej ≤
Cj

(j − 1)!
(x−t)+j−1, j > 1.

Proof. Proceeding inductively we can assume (4.66) holds for a given j. Then
Bj+1 = B ◦Bj is of the form in (4.66) with

(4.67) ej+1(x, t) =

∫ 2π

0

H(x− s)e(x, s)H(s− t)ej(s− x)ds

=

∫ x

t

e(x, s)ej(s− t)ds ≤ sup |e| Cj

(j − 1)!

∫ x

t

(s− t)j−1
+ ds ≤ Cj+1

j!
(x− t)+j

provided C ≥ sup |e|. �

The estimate (4.67) means that, for a different constant

(4.68) ‖Bj‖L2 ≤ Cj

j − 1
, j > 1

which is summable, so the Neumann series (4.58) does converge.
To see the regularity of u = (Id +B)−1Ikf when f ∈ C([0, 2π]) consider (4.58).

Each of the terms in the sum maps L2(0, 2π) into C([0, 2π]) so u ∈ C([0.2π]).
Proceeding iteratively, for each p = 0, . . . , k − 1, each of these terms, Ik−j(bju)
maps Cp([0, eπ]) into Cp+1([0, 2π]) so u ∈ Ck([0, 2π]). Similarly for the Cauchy
conditions. Differentiating (4.58) recovers (4.51). �

As indicated above, the case of non-vanishing Cauchy data follows from Theo-
rem 4.4. Let

(4.69) Σ : Ck([0, 2π]) −→ Ck

denote the Cauchy data map – evaluating the function and its first k−1 derivatives
at 0.

Proposition 4.3. The combined map

(4.70) (Σ, P ) : Ck([0, 2π]) −→ Ck ⊕ C([0, 2π])

is an isomorphism.

Proof. The map Σ in (4.69) is certainly surjective, since it is surjective even
on polynomials of degree k− 1. Thus given z ∈ Ck there exists v ∈ Ck([0, 2π]) with
Σv = z. Now, given f ∈ C([0, 2π]) Theorem 4.4 allows us to find w ∈ Ck([0, 2π])
with Pw = f−Pv and Σw = 0. So u = v+w satisfies (Σ, P )u = (z, f) and we have
shown the surjectivity of (4.70). The injectivity again follows from Theorem 4.4 so
(Σ, P ) is a bijection and hence and isomorphism using the Open Mapping Theorem
(or directly). �

Let me finish this discussion of the Cauch problem by introducing the notion
of a weak solution. let Σ2π : Ck([0, 2π]) −→ Ck be the evaluation of the Cauchy
data at the top end of the interval. Then if u ∈ Ck([0, 2π]) satisfies Σu = 0 and
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v ∈ C([90, 2π]) satisfies Σ2πv = 0 there are no boundary terms in integration by
parts for derivatives up to order k and it follows that

(4.71)

∫
(0,2π)

Puv =

∫
(0,2π)

uQv, Qv = (−1)k
dkv

dxk
+

k−1∑
j=0

djajv

dxj

Thus Q is another operator just like P called the ‘formal adjoint’ of P.
If Pu = f then (4.71) is just

(4.72) 〈u,Qv〉L2 = 〈f, v〉L2 ∀ v ∈ Ck([0, 2π]) with Σ2πv = 0.

The significant point here is that (4.72) makes sense even if u, f ∈ L2([0, 2π]).

Definition 4.3. If u, f ∈ L2([0, 2π]) satisfy (4.72) then u is said to be a weak
solution of (4.51).

Exercise 2. Prove that ‘weak=strong’ meaning that if f ∈ C([0, 2π]) and
u ∈ L2(0, 2π) is a weak solution of (4.72) then in fact u ∈ Ck([0, 2π]) satisifes (4.51)
‘in the classical sense’.

4. Dirichlet problem on an interval

I want to do a couple more ‘serious’ applications of what we have done so
far. There are many to choose from, and I will mention some more, but let me
first consider the Diriclet problem on an interval. I will choose the interval [0, 2π]
because we looked at it before but of course we could work on a general bounded
interval instead. So, we are supposed to be trying to solve

(4.73) −d
2u(x)

dx2
+ V (x)u(x) = f(x) on (0, 2π), u(0) = u(2π) = 0

where the last part are the Dirichlet boundary conditions. I will assume that the
‘potential’

(4.74) V : [0, 2π] −→ R is continuous and real-valued.

Now, it certainly makes sense to try to solve the equation (4.73) for say a given
f ∈ C([0, 2π]), looking for a solution which is twice continuously differentiable on
the interval. It may not exist, depending on V but one thing we can shoot for,
which has the virtue of being explicit, is the following:

Proposition 4.4. If V ≥ 0 as in (4.74) then for each f ∈ C([0, 2π]) there
exists a unique twice continuously differentiable solution, u, to (4.73).

There are in fact various approaches to this but we want to go through L2

theory – not surprisingly of course. How to start?
Well, we do know how to solve (4.73) if V ≡ 0 since we can use (Riemann)

integration. Thus, ignoring the boundary conditions for the moment, we can find
a solution to −d2v/dx2 = f on the interval by integrating twice:

(4.75) v(x) = −
∫ x

0

∫ y

0

f(t)dtdy satifies − d2v/dx2 = f on (0, 2π).

Moroever v really is twice continuously differentiable if f is continuous. So, what
has this got to do with operators? Well, we can change the order of integration in
(4.75) to write v as

(4.76) v(x) = −
∫ x

0

∫ x

t

f(t)dydt =

∫ 2π

0

a(x, t)f(t)dt, a(x, t) = (t− x)H(x− t)
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where the Heaviside function H(y) is 1 when y ≥ 0 and 0 when y < 0. Thus a(x, t)
is actually continuous on [0, 2π]× [0, 2π] since the t−x factor vanishes at the jump
in H(t− x). So (4.76) shows that v is given by applying an integral operator, with
continuous kernel on the square, to f.

Before thinking more seriously about this, recall that there is also the matter
of the boundary conditions. Clearly, v(0) = 0 since we integrated from there. On
the other hand, there is no particular reason why

(4.77) v(2π) =

∫ 2π

0

(t− 2π)f(t)dt

should vanish. However, we can always add to v any linear function and still satisfy
the differential equation. Since we do not want to spoil the vanishing at x = 0 we
can only afford to add cx but if we choose the constant c correctly this will work.
Namely consider

(4.78) c =
1

2π

∫ 2π

0

(2π − t)f(t)dt, then (v + cx)(2π) = 0.

So, finally the solution we want is

(4.79) w(x) =

∫ 2π

0

b(x, t)f(t)dt, b(x, t) = min(t, x)− tx

2π
∈ C([0, 2π]2)

with the formula for b following by simple manipulation from

(4.80) b(x, t) = a(x, t) + x− tx

2π

Thus there is a unique, twice continuously differentiable, solution of −d2w/dx2 = f
in (0, 2π) which vanishes at both end points and it is given by the integral operator
(4.79).

Lemma 4.4. The integral operator (4.79) extends by continuity from C([0, 2π])
to a compact, self-adjoint operator on L2(0, 2π).

Proof. Since w is given by an integral operator with a continuous real-valued
kernel which is even in the sense that (check it)

(4.81) b(t, x) = b(x, t)

we might as well give a more general result. �

Proposition 4.5. If b ∈ C([0, 2π]2) then

(4.82) Bf(x) =

∫ 2π

0

b(x, t)f(t)dt

defines a compact operator on L2(0, 2π) if in addition b satisfies

(4.83) b(t, x) = b(x, t)

then B is self-adjoint.

Proof. If f ∈ L2((0, 2π)) and v ∈ C([0, 2π]) then the product vf ∈ L2((0, 2π))
and ‖vf‖L2 ≤ ‖v‖∞‖f‖L2 . This can be seen for instance by taking an absolutely
summable approximation to f, which gives a sequence of continuous functions con-
verging a.e. to f and bounded by a fixed L2 function and observing that vfn → vf
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a.e. with bound a constant multiple, sup |v|, of that function. It follows that for
b ∈ C([0, 2π]2) the product

(4.84) b(x, y)f(y) ∈ L2(0, 2π)

for each x ∈ [0, 2π]. Thus Bf(x) is well-defined by (4.83) since L2((0, 2π) ⊂
L1((0, 2π)).

Not only that, but Bf ∈ C([0, 2π]) as can be seen from the Cauchy-Schwarz
inequality,
(4.85)

|Bf(x′)−Bf(x)| = |
∫

(b(x′, y)− b(x, y))f(y)| ≤ sup
y
|b(x′, y − b(x, y)|(2π)

1
2 ‖f‖L2 .

Essentially the same estimate shows that

(4.86) sup
x
|Bf(x)| ≤ (2π)

1
2 sup

(x,y)

|b|‖f‖L2

so indeed, B : L2(0, 2π) −→ C([0, 2π]) is a bounded linear operator.
When b satisfies (4.83) and f and g are continuous

(4.87)

∫
Bf(x)g(x) =

∫
f(x)Bg(x)

and the general case follows by approximation in L2 by continuous functions.
So, we need to see the compactness. If we fix x then b(x, y) ∈ C([0, 2π]) and

then if we let x vary,

(4.88) [0, 2π] 3 x 7−→ b(x, ·) ∈ C([0, 2π])

is continuous as a map into this Banach space. Again this is the uniform continuity
of a continuous function on a compact set, which shows that

(4.89) sup
y
|b(x′, y)− b(x, y)| → 0 as x′ → x.

Since the inclusion map C([0, 2π]) −→ L2((0, 2π)) is bounded, i.e continuous, it
follows that the map (I have reversed the variables)

(4.90) [0, 2π] 3 y 7−→ b(·, y) ∈ L2((0, 2π))

is continuous and so has a compact range.
Take the Fourier basis ek for [0, 2π] and expand b in the first variable. Given

ε > 0 the compactness of the image of (4.90) implies that the Fourier Bessel series
converges uniformly (has uniformly small tails), so for some N

(4.91)
∑
|k|>N

|(b(x, y), ek(x))|2 < ε ∀ y ∈ [0, 2π].

The finite part of the Fourier series is continuous as a function of both arguments

(4.92) bN (x, y) =
∑
|k|≤N

ek(x)ck(y), ck(y) = (b(x, y), ek(x))

and so defines another bounded linear operator BN as before. This operator can
be written out as

(4.93) BNf(x) =
∑
|k|≤N

ek(x)

∫
ck(y)f(y)dy
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and so is of finite rank – it always takes values in the span of the first 2N + 1
trigonometric functions. On the other hand the remainder is given by a similar
operator with corresponding to qN = b− bN and this satisfies

(4.94) sup
y
‖qN (·, y)‖L2((0,2π)) → 0 as N →∞.

Thus, qN has small norm as a bounded operator on L2((0, 2π)) so B is compact –
it is the norm limit of finite rank operators. �

Now, recall from Problem# that uk = π−
1
2 sin(kx/2), k ∈ N, is also an or-

thonormal basis for L2(0, 2π) (it is not the Fourier basis!) Moreover, differentiating
we find straight away that

(4.95) −d
2uk
dx2

=
k2

4
uk.

Since of course uk(0) = 0 = uk(2π) as well, from the uniqueness above we conclude
that

(4.96) Buk =
4

k2
uk ∀ k.

Thus, in this case we know the orthonormal basis of eigenfunctions for B. They are
the uk, each eigenspace is 1 dimensional and the eigenvalues are 4k−2.

Remark 4.1. As noted by Pavel Etingof it is worthwhile to go back to the
discussion of trace class operators to see that B is indeed of trace class. Its trace
can be computed in two ways. As the sum of its eigenvalues and as the integral of
its kernel on the diagonal. This gives the well-known formula

(4.97)
π2

6
=
∑
k∈N

1

k2
.

This is a simple example of a ‘trace formula’; you might like to look up some others!

So, this happenstance allows us to decompose B as the square of another op-
erator defined directly on the othornormal basis. Namely

(4.98) Auk =
2

k
uk =⇒ B = A2.

Here again it is immediate that A is a compact self-adjoint operator on L2(0, 2π)
since its eigenvalues tend to 0. In fact we can see quite a lot more than this.

Lemma 4.5. The operator A maps L2(0, 2π) into C([0, 2π]) and Af(0) = Af(2π) =
0 for all f ∈ L2(0, 2π).

Proof. If f ∈ L2(0, 2π) we may expand it in Fourier-Bessel series in terms of
the uk and find

(4.99) f =
∑
k

ckuk, {ck} ∈ l2.

Then of course, by definition,

(4.100) Af =
∑
k

2ck
k
uk.
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Here each uk is a bounded continuous function, with the bound |uk| ≤ C being
independent of k. So in fact (4.100) converges uniformly and absolutely since it is
uniformly Cauchy, for any q > p,

(4.101) |
q∑

k=p

2ck
k
uk| ≤ 2C

q∑
k=p

|ck|k−1 ≤ 2C

 q∑
k=p

k−2

 1
2

‖f‖L2

where Cauchy-Schwarz has been used. This proves that

A : L2(0, 2π) −→ C([0, 2π])

is bounded and by the uniform convergence uk(0) = uk(2π) = 0 for all k implies
that Af(0) = Af(2π) = 0. �

So, going back to our original problem we try to solve (4.73) by moving the V u
term to the right side of the equation (don’t worry about regularity yet) and hope
to use the observation that

(4.102) u = −A2(V u) +A2f

should satisfy the equation and boundary conditions. In fact, let’s anticipate that
u = Av, which has to be true if (4.102) holds with v = −AV u + Af, and look
instead for

(4.103) v = −AV Av +Af =⇒ (Id +AV A)v = Af.

So, we know that multiplication by V, which is real and continuous, is a bounded
self-adjoint operator on L2(0, 2π). Thus AV A is a self-adjoint compact operator so
we can apply our spectral theory to it and so examine the invertibility of Id +AV A.
Working in terms of a complete orthonormal basis of eigenfunctions ei of AV A we
see that Id +AV A is invertible if and only if it has trivial null space, i.e. if −1 is not
an eigenvalue of AV A. Indeed, an element of the null space would have to satisfy
u = −AV Au. On the other hand we know that AV A is positive since

(4.104) (AV Aw,w) = (V Av,Av) =

∫
(0,2π)

V (x)|Av|2 ≥ 0 =⇒
∫

(0,2π)

|u|2 = 0,

using the assumed non-negativity of V. So, there can be no null space – all the eigen-
values of AV A are at least non-negative and the inverse is the bounded operator
given by its action on the basis

(4.105) (Id +AV A)−1ei = (1 + τi)
−1ei, AV Aei = τiei.

Thus Id +AV A is invertible on L2(0, 2π) with inverse of the form Id +Q, Q
again compact and self-adjoint since (1 + τi)

−1 − 1 → 0. Now, to solve (4.103) we
just need to take

(4.106) v = (Id +Q)Af ⇐⇒ v +AV Av = Af in L2(0, 2π).

Then indeed

(4.107) u = Av satisfies u+A2V u = A2f.

In fact since v ∈ L2(0, 2π) from (4.106) we already know that u ∈ C([0, 2π]) vanishes
at the end points.

Moreover if f ∈ C([0, 2π]) we know that Bf = A2f is twice continuously
differentiable, since it is given by two integrations – that is where B came from.
Now, we know that u in L2 satisfies u = −A2(V u)+A2f. Since V u ∈ L2((0, 2π) =⇒
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A(V u) ∈ L2(0, 2π) and then, as seen above, A(A(V u) is continuous. So combining
this with the result about A2f we see that u itself is continuous and hence so is
V u. But then, going through the routine again

(4.108) u = −A2(V u) +A2f

is the sum of two twice continuously differentiable functions. Thus it is so itself. In
fact from the properties of B = A2 it satisifes

(4.109) −d
2u

dx2
= −V u+ f

which is what the result claims. So, we have proved the existence part of Proposi-
tion 4.4.

The uniqueness follows pretty much the same way. If there were two twice
continuously differentiable solutions then the difference w would satisfy

(4.110) −d
2w

dx2
+ V w = 0, w(0) = w(2π) = 0 =⇒ w = −Bw = −A2V w.

Thus w = Aφ, φ = −AV w ∈ L2(0, 2π). Thus φ in turn satisfies φ = AV Aφ and
hence is a solution of (Id +AV A)φ = 0 which we know has none (assuming V ≥ 0).
Since φ = 0, w = 0.

This completes the proof of Proposition 4.4. To summarize, what we have
shown is that Id +AV A is an invertible bounded operator on L2(0, 2π) (if V ≥ 0)
and then the solution to (4.73) is precisely

(4.111) u = A(Id +AV A)−1Af

which is twice continuously differentiable and satisfies the Dirichlet conditions for
each f ∈ C([0, 2π]).

This may seem a ‘round-about’ approach but it is rather typical of methods
from Functional Analysis. What we have done is to separate the two problems of
‘existence’ and ‘regularity’. We first get existence of what is often called a ‘weak
solution’ of the problem, in this case given by (4.111), which is in L2(0, 2π) for
f ∈ L2(0, 2π) and then show, given regularity of the right hand side f, that this is
actually a ‘classical solution’.

Even if we do not assume that V ≥ 0 we can see fairly directly what is hap-
pening.

Theorem 4.5. For any V ∈ C([0, 2π]) real-valued, there is an orthonormal basis
wk of L2(0, 2π) consisting of twice-continuously differentiable functions on [0, 2π],

vanishing at the end-points and satisfying −d
2wk
dx2 +V wk = Tkwk where Tk →∞ as

k → ∞. The equation (4.73) has a (twice continuously differentiable) solution for
given f ∈ C([0, 2π]) if and only if

(4.112) Tk = 0 =⇒
∫

(0,2π)

fwk = 0.

Proof. For a real-valued V we can choose a constant c such that V + c ≥ 0.
Then the eigenvalue equation we are trying to solve can be rewritten

(4.113) −d
2w

dx2
+ V w = Tw ⇐⇒ −d

2w

dx2
+ (V + c)w = (T + c)w.



132 4. DIFFERENTIAL AND INTEGRAL OPERATORS

Proposition 4.4 shows that there is indeed an orthonormal basis of solutions of the
second equation, wk as in the statement above with positive eigenvalues Tk+c→∞
with k.

So, only the solvability of (4.73) remains to be checked. What we have shown
above is that if f ∈ C([0, 2π]) then a twice continuously differentiable solution to

(4.114) −d
2w

dx2
+ V w = f, w(0) = w(2π) = 0

is precisely of the form w = Av where

(4.115) v ∈ L2(0, 2π), (Id +AV A)v = Af.

Going from (4.114) to (4.115) involves the properties of B = A2 since (4.114) implies
that

w +A2V w = A2f =⇒ w = Av with v as in (4.115)

Conversely if v satisfies (4.115) then w = Av satisfies w + A2V w = A2f which
implies that w has the correct regularity and satisfies (4.114).

Applying this to the case f = 0 shows that for twice continuously differentiable
functions on [0, 2π],

(4.116) − d2w

dx2
+ V w = 0, w(0) = w(2π) = 0⇐⇒

w ∈ A{v ∈ L2(0, 2π); (Id +AV A)v = 0}.
Since AV A is compact and self-adjoint we see that

(4.117) (Id +AV A)v = Af has a solution in L2(0, 2π) =⇒
Af ⊥ {v′ ∈ L2(0, 2π); (Id +AV A)v′ = 0}.

However this last condition is equivalent to f ⊥ A{v ∈ L2(0, 2π); (Id +AV A)v = 0}
which is by the equivalence of (4.114) and (4.115) reduces precisely to (4.112). �

So, ultimately the solution of the differential equation (4.73) is just like the
solution of a finite dimensional problem for a self-adjoint matrix. There is a solution
if and only if the right side is orthogonal to the null space; it just requires a bit
more work. Lots of ‘elliptic’ problems turn out to be like this.

We can also say (a great deal) more about the eigenvalues Tk and eigenfunctions
wk. For instance, the derivative

(4.118) w′k(0) 6= 0.

Indeed, were this to vanish wk would be a solution of the Cauchy problem (4.50)

for the second-order operator P = d2

dx2 −q+Tk with ‘forcing term’ f = 0 and hence,
by Theorem 4.4 must itself vanish on the interval, which is a contradiction.

From this in turn it follows that the (non-trivial) eigenspaces

(4.119) Ek(q) = {w ∈ C2([0, 2π]);−d
2w

dx2
+ qw = Tkw}

are exactly one-dimensional. Indeed if wk is one non-zero element, so satisfing
(4.118) and w is another, then w − w′(0)wk/w

′
k(0) ∈ Ek(q) again must satisfy the

Cauchy conditions at 0 so w = w′(0)wk/w
′
k(0).

Exercise 3. Show that the eigenfunctions functions normalized to have w′k(0) =
1 are all real and wk has exactly k − 1 zeros in the interior of the interval.
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You could try your hand at proving Borg’s Theorem – if q ∈ C([0, 2π]) and

the eigenvalues Tk = k2

4 are the same as those for q = 0 then q = 0! This is the
beginning of a large theory of the inverse problem – to what extent can one recover
q from the knowledge of the Tk? In brief the answer is that one cannot do so in
general. However q is determined if one knows the Tk and the ‘norming constants’
w′k(2π)/w′k(0).

5. Harmonic oscillator

As a second ‘serious’ application of our Hilbert space theory I want to discuss
the harmonic oscillator, the corresponding Hermite basis for L2(R). Note that so
far we have not found an explicit orthonormal basis on the whole real line, even
though we know L2(R) to be separable, so we certainly know that such a basis
exists. How to construct one explicitly and with some handy properties? One way
is to simply orthonormalize – using Gram-Schmidt – some countable set with dense
span. For instance consider the basic Gaussian function

(4.120) exp(−x
2

2
) ∈ L2(R).

This is so rapidly decreasing at infinity that the product with any polynomial is
also square integrable:

(4.121) xk exp(−x
2

2
) ∈ L2(R) ∀ k ∈ N0 = {0, 1, 2, . . . }.

Orthonormalizing this sequence gives an orthonormal basis, where completeness
can be shown by an appropriate approximation technique but as usual is not so
simple. This is in fact the Hermite basis as we will eventually show.

Rather than proceed directly we will work up to this by discussing the eigen-
functions of the harmonic oscillator

(4.122) P = − d2

dx2
+ x2

which we want to think of as an operator – although for the moment I will leave
vague the question of what it operates on.

As you probably already know, and we will show later, it is straightforward
to show that P has a lot of eigenvectors using the ‘creation’ and ‘annihilation’
operators. We want to know a bit more than this and in particular I want to
apply the abstract discussion above to this case but first let me go through the
‘formal’ theory. There is nothing wrong here, just that we cannot easily conclude
the completeness of the eigenfunctions.

The first thing to observe is that the Gaussian is an eigenfunction of H

(4.123) Pe−x
2/2 = − d

dx
(−xe−x

2/2 + x2e−x
2/2)

= −(x2 − 1)e−x
2/2 + x2e−x

2/2 = e−x
2/2

with eigenvalue 1. It is an eigenfunction but not, for the moment, of a bounded
operator on any Hilbert space – in this sense it is only a formal eigenfunction.
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In this special case there is an essentially algebraic way to generate a whole
sequence of eigenfunctions from the Gaussian. To do this, write

(4.124) Pu = (− d

dx
+ x)(

d

dx
+ x)u+ u = (Cr An +1)u,

Cr = (− d

dx
+ x), An = (

d

dx
+ x)

again formally as operators. Then note that

(4.125) An e−x
2/2 = 0

which again proves (4.123). The two operators in (4.124) are the ‘creation’ operator
and the ‘annihilation’ operator. They almost commute in the sense that

(4.126) [An,Cr]u = (An Cr−Cr An)u = 2u

for say any twice continuously differentiable function u.

Now, set u0 = e−x
2/2 which is the ‘ground state’ and consider u1 = Cru0.

From (4.126), (4.125) and (4.124),

(4.127) Pu1 = (Cr An Cr + Cr)u0 = Cr2 Anu0 + 3 Cru0 = 3u1.

Thus, u1 is an eigenfunction with eigenvalue 3.

Lemma 4.6. For j ∈ N0 = {0, 1, 2, . . . } the function uj = Crj u0 satisfies
Puj = (2j + 1)uj .

Proof. This follows by induction on j, where we know the result for j = 0
and j = 1. Then

(4.128) P Cruj = (Cr An +1) Cruj = Cr(P − 1)uj + 3 Cruj = (2j + 3)uj .

�

Again by induction we can check that uj = (2jxj + qj(x))e−x
2/2 where qj is a

polynomial of degree at most j − 2. Indeed this is true for j = 0 and j = 1 (where
q0 = q1 ≡ 0) and then

(4.129) Cruj = (2j+1xj+1 + Cr qj)e
−x2/2.

and qj+1 = Cr qj is a polynomial of degree at most j − 1 – one degree higher than
qj .

From this it follows in fact that the finite span of the uj consists of all the

products p(x)e−x
2/2 where p(x) is any polynomial.

Now, all these functions are in L2(R) and we want to compute their norms.
First, a standard integral computation1 shows that

(4.130)

∫
R
(e−x

2/2)2 =

∫
R
e−x

2

=
√
π

1To compute the Gaussian integral, square it and write as a double integral then introduce
polar coordinates

(

∫
R
e−x

2
dx)2 =

∫
R2
e−x

2−y2dxdy =

∫ ∞
0

∫ 2π

0
e−r

2
rdrdθ = π

[
− e−r

2]∞
0

= π.
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For j > 0, integration by parts (easily justified by taking the integral over [−R,R]
and then letting R→∞) gives

(4.131)

∫
R

(Crj u0)2 =

∫
R

Crj u0(x) Crj u0(x)dx =

∫
R
u0 Anj Crj u0.

Now, from (4.126), we can move one factor of An through the j factors of Cr until
it emerges and ‘kills’ u0

(4.132) An Crj u0 = 2 Crj−1 u0 + Cr An Crj−1 u0

= 2 Crj−1 u0 + Cr2 An Crj−2 u0 = 2j Crj−1 u0.

So in fact,

(4.133)

∫
R

(Crj u0)2 = 2j

∫
R

(Crj−1 u0)2 = 2jj!
√
π.

A similar argument shows that

(4.134)

∫
R
ukuj =

∫
R
u0 Ank Crj u0 = 0 if k 6= j.

Thus the functions

(4.135) ej = 2−j/2(j!)−
1
2π−

1
4Cje−x

2/2

form an orthonormal sequence in L2(R).
We would like to show this orthonormal sequence is complete. Rather than

argue through approximation, we can guess that in some sense the operator

(4.136) An Cr = (
d

dx
+ x)(− d

dx
+ x) = − d2

dx2
+ x2 + 1

should be invertible, so one approach is to use the ideas above of Friedrichs’ exten-
sion to construct its ‘inverse’ and show this really exists as a compact, self-adjoint
operator on L2(R) and that its only eigenfunctions are the ei in (4.135). Another,
more indirect approach is described below.

6. Fourier transform

The Fourier transform for functions on R is in a certain sense the limit of the
definition of the coefficients of the Fourier series on an expanding interval, although
that is not generally a good way to approach it. We know that if u ∈ L1(R) and
v ∈ C∞(R) is a bounded continuous function then vu ∈ L1(R) – this follows from
our original definition by approximation. So if u ∈ L1(R) the integral

(4.137) û(ξ) =

∫
e−ixξu(x)dx, ξ ∈ R

exists for each ξ ∈ R as a Lebesgue integral. Note that there are many different
normalizations of the Fourier transform in use. This is the standard ‘analyst’s’
normalization.

Proposition 4.6. The Fourier tranform, (4.137), defines a bounded linear map

(4.138) F : L1(R) 3 u 7−→ û ∈ C0(R)

into the closed subspace C0(R) ⊂ C∞(R) of continuous functions which vanish at
infinity (with respect to the supremum norm).
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Proof. We know that the integral exists for each ξ and from the basic prop-
erties of the Lebesgue integal

(4.139) |û(ξ)| ≤ ‖u‖L1 , since |e−ixξu(x)| = |u(x)|.

To investigate its properties we restrict to u ∈ Cc(R), a compactly-supported
continuous function, say with support in −R,R]. Then the integral becomes a
Riemann integral and the integrand is a continuous function of both variables. It
follows that the Fourier transform is uniformly continuous since
(4.140)

|û(ξ)− û(ξ′)| ≤
∫
|x|≤R

|e−ixξ − e−ixξ
′
||u(x)|dx ≤ 2R sup |u| sup

|x|≤R
|e−ixξ − e−ixξ

′
|

with the right side small by the uniform continuity of continuous functions on com-
pact sets. From (4.139), if un → u in L1(R) with un ∈ Cc(R) it follows that ûn → û
uniformly on R. Thus, as the uniform limit of uniformly continuous functions, the
Fourier transform is uniformly continuous on R for any u ∈ L1(R) (you can also
see this from the continuity-in-the-mean of L1 functions).

Now, we know that even the compactly-supported once continuously differen-
tiable functions, forming C1

c (R) are dense in L1(R) so we can also consider (4.137)
where u ∈ C1

c (R). Then the integration by parts as follows is justified

(4.141) ξû(ξ) = i

∫
(
de−ixξ

dx
)u(x)dx = −i

∫
e−ixξ

du(x)

dx
dx.

Since du/dx ∈ Cc(R) (by assumption) the estimate (4.139) now gives

(4.142) sup
ξ∈R
|ξû(ξ)| ≤ 2R sup

x∈R
|du
dx
|.

This certainly implies the weaker statement that

(4.143) lim
|ξ|→∞

|û(ξ)| = 0

which is ‘vanishing at infinity’. Now we again use the density, this time of C1
c (R),

in L1(R) and the uniform estimate (4.139), plus the fact that if a sequence of
continuous functions on R converges uniformly on R and each element vanishes at
infinity then the limit vanishes at infinity to complete the proof of the Proposition.

�

7. Fourier inversion

We could use the completeness of the orthonormal sequence of eigenfunctions
for the harmonic oscillator discussed above to show that the Fourier tranform ex-
tends by continuity from Cc(R) to define an isomorphism

(4.144) F : L2(R) −→ L2(R)

with inverse given by the corresponding continuous extension of

(4.145) Gv(x) = (2π)−1

∫
eixξv(ξ).

Instead, we will give a direct proof of the Fourier inversion formula, via Schwartz
space and an elegant argument due to Hörmander. Then we will use this to prove
the completeness of the eigenfunctions we have found.
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We have shown above that the Fourier transform is defined as an integral if
u ∈ L1(R). Suppose that in addition we know that xu ∈ L1(R). We can summarize
the combined information as

(4.146) (1 + |x|)u ∈ L1(R).

Lemma 4.7. If u satisfies (4.146) then û is continuously differentiable and
dû/dξ = F(−ixu) is bounded.

Proof. Consider the difference quotient for the Fourier transform:

(4.147)
û(ξ + s)− û(ξ)

s
=

∫
D(x, s)e−ixξu(x), D(x, s) =

e−ixs − 1

s
.

We can use the standard proof of Taylor’s formula to write the difference quotient
inside the integral as

(4.148) D(x, s) = −ix
∫ 1

0

e−itxsdt =⇒ |D(x, s)| ≤ |x|.

It follows that as s→ 0 (along a sequence if you prefer) D(x, s)e−ixξu(x) is bounded
by the L1(R) function |x||u(x)| and converges pointwise to −ie−ixξxu(x). Domi-
nated convergence therefore shows that the integral converges showing that the
derivative exists and that

(4.149)
dû(ξ)

dξ
= F(−ixu).

From the earlier results it follows that the derivative is continuous and bounded,
proving the lemma. �

Now, we can iterate this result and so conclude:

(4.150)

(1 + |x|)ku ∈ L1(R) ∀ k =⇒
û is infinitely differentiable with bounded derivatives and

dkû

dξk
= F((−ix)ku).

This result shows that from ‘decay’ of u we deduce smoothness of û. We can
go the other way too. One way to ensure the assumption in (4.150) is to make the
stronger assumption that

(4.151) xku is bounded and continuous ∀ k.
Indeed, Dominated Convergence shows that if u is continuous and satisfies the
bound

|u(x)| ≤ (1 + |x|)−r, r > 1

then u ∈ L1(R). So the integrability of xju follows from the bounds in (4.151) for
k ≤ j + 2. This is throwing away information but simplifies things below.

In the opposite direction, suppose that u is continuously differentiable and
satisfies the estimates for some r > 1

|u(x)|+ |du(x)

dx
| ≤ C(1 + |x|)−r.

Then consider

(4.152) ξû = i

∫
de−ixξ

dx
u(x) = lim

R→∞
i

∫ R

−R

de−ixξ

dx
u(x).
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We may integrate by parts in this integral to get

(4.153) ξû = lim
R→∞

(
i
[
e−ixξu(x)

]R
−R − i

∫ R

−R
e−ixξ

du

dx

)
.

The decay of u shows that the first term vanishes in the limit and the second integral
converges so

(4.154) ξû = F(−idu
dx

).

Iterating this in turn we see that if u has continuous derivatives of all orders
and for all j

(4.155) |d
ju

dxj
| ≤ Cj(1 + |x|)−r, r > 1 then the ξj û = F((−i)j d

ju

dxj
)

are all bounded.
Laurent Schwartz defined a space which handily encapsulates these results.

Definition 4.4. Schwartz space, S(R), consists of all the infinitely differen-
tiable functions u : R −→ C such that

(4.156) ‖u‖j,k = sup |xj d
ku

dxk
| <∞ ∀ j, k ≥ 0.

This is clearly a linear space. In fact it is a complete metric space in a natural
way. All the ‖ · ‖j,k in (4.156) are norms on S(R), but none of them is stronger
than the others. So there is no natural norm on S(R) with respect to which it is
complete. In the problems below you can find some discussion of the fact that

(4.157) d(u, v) =
∑
j,k≥0

2−j−k
‖u− v‖j,k

1 + ‖u− v‖j,k

is a complete metric. We will not use this here but it is the right way to understand
what is going on.

Notice that there is some prejudice on the order of multiplication by x and dif-
ferentiation in (4.156). This is only apparent, since these estimates (taken together)
are equivalent to

(4.158) sup |d
k(xju)

dxk
| <∞ ∀ j, k ≥ 0.

To see the equivalence we can use induction over N where the inductive statement
is the equivalence of (4.156) and (4.158) for j + k ≤ N. Certainly this is true for
N = 0 and to carry out the inductive step just differentiate out the product to see
that

dk(xju)

dxk
= xj

dku

dxk
+

∑
l+m<k+j

cl,m,k,jx
m d

lu

dxl

where one can be much more precise about the extra terms, but the important
thing is that they all are lower order (in fact both degrees go down). If you want to
be careful, you can of course prove this identity by induction too! The equivalence
of (4.156) and (4.158) for N + 1 now follows from that for N.

Theorem 4.6. The Fourier transform restricts to a bijection on S(R) with
inverse

(4.159) G(v)(x) =
1

2π

∫
eixξv(ξ).
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Proof. The proof (due to Hörmander as I said above) will take a little while
because we need to do some computation, but I hope you will see that it is quite
clear and elementary.

First we need to check that F : S(R) −→ S(R), but this is what I just did the
preparation for. Namely the estimates (4.156) imply that (4.155) applies to all the
dk(xju)
dxk

and so

(4.160) ξk
dj û

dξj
is continuous and bounded ∀ k, j =⇒ û ∈ S(R).

This indeed is why Schwartz introduced this space.
So, what we want to show is that with G defined by (4.159), u = G(û) for all

u ∈ S(R). Notice that there is only a sign change and a constant factor to get from
F to G so certainly G : S(R) −→ S(R). We start off with what looks like a small
part of this. Namely we want to show that

(4.161) I(û) =

∫
û = 2πu(0).

Here, I : S(R) −→ C is just integration, so it is certainly well-defined. To prove
(4.161) we need to use a version of Taylor’s formula and then do a little computation.

Lemma 4.8. If u ∈ S(R) then

(4.162) u(x) = u(0) exp(−x
2

2
) + xv(x), v ∈ S(R).

Proof. Here I will leave it to you (look in the problems) to show that the
Gaussian

(4.163) exp(−x
2

2
) ∈ S(R).

Observe then that the difference

w(x) = u(x)− u(0) exp(−x
2

2
) ∈ S(R) and w(0) = 0.

This is clearly a necessary condition to see that w = xv with v ∈ S(R) and we can
then see from the Fundamental Theorem of Calculus that

(4.164) w(x) =

∫ x

0

w′(y)dy = x

∫ 1

0

w′(tx)dt =⇒ v(x) =

∫ 1

0

w′(tx) =
w(x)

x
.

From the first formula for v it follows that it is infinitely differentiable and from the
second formula the derivatives decay rapidly since each derivative can be written

in the form of a finite sum of terms p(x)d
lw
dxl

/xN where the p’s are polynomials.
The rapid decay of the derivatives of w therefore implies the rapid decay of the
derivatives of v. So indeed we have proved Lemma 4.8. �

Let me set γ(x) = exp(−x
2

2 ) to simplify the notation. Taking the Fourier
transform of each of the terms in (4.162) gives

(4.165) û = u(0)γ̂ + i
dv̂

dξ
.

Since v̂ ∈ S(R),

(4.166)

∫
dv̂

dξ
= lim
R→∞

∫ R

−R

dv̂

dξ
= lim
R→∞

[
v̂(ξ)

]R
−R = 0.
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So now we see that ∫
û = cu(0), c =

∫
γ̂

being a constant that we still need to work out!

Lemma 4.9. For the Gaussian, γ(x) = exp(−x
2

2 ),

(4.167) γ̂(ξ) =
√

2πγ(ξ).

Proof. Certainly, γ̂ ∈ S(R) and from the identities for derivatives above

(4.168)
dγ̂

dξ
= −iF(xγ), ξγ̂ = F(−idγ

dx
).

Thus, γ̂ satisfies the same differential equation as γ :

dγ̂

dξ
+ ξγ̂ = −iF(

dγ

dx
+ xγ) = 0.

This equation we can solve and so we conclude that γ̂ = c′γ where c′ is also a
constant that we need to compute. To do this observe that

(4.169) c′ = γ̂(0) =

∫
γ =
√

2π

which gives (4.167). The computation of the integral in (4.169) is a standard clever
argument which you probably know. Namely take the square and work in polar
coordinates in two variables:

(4.170) (

∫
γ)2 =

∫ ∞
0

∫ ∞
0

e−(x2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdθ = 2π

[
− e−r

2/2
]∞
0

= 2π.

�

So, finally we need to get from (4.161) to the inversion formula. Changing
variable in the Fourier transform we can see that for any y ∈ R, setting uy(x) =
u(x+ y), which is in S(R) if u ∈ S(R),

(4.171) F(uy) =

∫
e−ixξuy(x)dx =

∫
e−i(s−y)ξu(s)ds = eiyξû.

Now, plugging uy into (4.161) we see that

(4.172)

∫
ûy(0) = 2πuy(0) = 2πu(y) =

∫
eiyξû(ξ)dξ =⇒ u(y) = Gu,

the Fourier inversion formula. So we have proved the Theorem. �

8. Convolution

There is a discussion of convolution later in the notes, I have inserted a new
(but not very different) treatment here to cover the density of S(R) in L2(R) needed
in the next section.

Consider two continuous functions of compact support u, v ∈ Cc(R). Their
convolution is

(4.173) u ∗ v(x) =

∫
u(x− y)v(y)dy =

∫
u(y)v(x− y)dy.



8. CONVOLUTION 141

The first integral is the definition, clearly it is a well-defined Riemann integral since
the integrand is continuous as a function of y and vanishes whenever v(y) vanishes
– so has compact support. In fact if both u and v vanish outside [−R,R] then
u ∗ v = 0 outside [−2R, 2R].

From standard properties of the Riemann integral (or Dominated convergence
if you prefer!) it follows easily that u∗v is continuous. What we need to understand
is what happens if (at least) one of u or v is smoother. In fact we will want to take
a very smooth function, so I pause here to point out

Lemma 4.10. There exists a (‘bump’) function ψ : R −→ R which is infinitely
differentiable, i.e. has continuous derivatives of all orders, vanishes outside [−1, 1],
is strictly positive on (−1, 1) and has integral 1.

Proof. We start with an explicit function,

(4.174) φ(x) =

{
e−1/x x > 0

0 x ≤ 0.

The exponential function grows faster than any polynomial at +∞, since

(4.175) exp(x) >
xk

k!
in x > 0 ∀ k.

This can be seen directly from the Taylor series which converges on the whole line
(indeed in the whole complex plane)

exp(x) =
∑
k≥0

xk

k!
.

From (4.175) we deduce that

(4.176) lim
x↓0

e−1/x

xk
= lim
R→∞

Rk

eR
= 0 ∀ k

where we substitute R = 1/x and use the properties of exp . In particular φ in
(4.174) is continuous across the origin, and so everywhere. We can compute the
derivatives in x > 0 and these are of the form

(4.177)
dlφ

dxl
=
pl(x)

x2l
e−1/x, x > 0, pl a polynomial.

As usual, do this by induction since it is true for l = 0 and differetiating the formula
for a given l one finds

(4.178)
dl+1φ

dxl+1
=

(
pl(x)

x2l+2
− 2l

pl(x)

x2l+1
+
p′l(x)

x2l

)
e−1/x

where the coefficient function is of the desired form pl+1/x
2l+2.

Once we know (4.177) then we see from (4.176) that all these functions are
continuous down to 0 where they vanish. From this it follows that φ in (4.174)
is infinitely differentiable. For φ itself we can use the Fundamental Theorem of
Calculus to write

(4.179) φ(x) =

∫ x

ε

U(t)dt+ φ(ε), x > ε > 0.



142 4. DIFFERENTIAL AND INTEGRAL OPERATORS

Here U is the derivative in x > 0. Taking the limit as ε ↓ 0 both sides converge,
and then we see that

φ(x) =

∫ x

0

U(t)dt.

From this it follows that φ is continuously differentiable across 0 and it derivative
is U, the continuous extension of the derivative from x > 0. The same argument
applies to succssive derivatives, so indeed φ is infinitely differentiable.

From φ we can construct a function closer to the desired bump function.
Namely

Φ(x) = φ(x+ 1)φ(1− x).

The first factor vanishes when x ≤ −1 and is otherwise positive while the second
vanishes when x ≥ 1 but is otherwise positive, so the product is infinitely differ-
entiable on R and positive on (−1, 1) but otherwise 0. Then we can normalize the
integral to 1 by taking

(4.180) ψ(x) = Φ(x)/

∫
Φ.

�

In particular from Lemma 4.10 we conclude that the space C∞c (R), of infinitely
differentiable functions of compact support, is not empty. Going back to convolution
in (4.173) suppose now that v is smooth. Then

(4.181) u ∈ Cc(R), v ∈ C∞c (R) =⇒ u ∗ v ∈ C∞c (R).

As usual this follows from properties of the Riemann integral or by looking directly
at the difference quotient

u ∗ v(x+ t)− u ∗ v(x)

t
=

∫
u(y)

v(x+ t− y)− v(x− y)

t
dt.

As t→ 0, the difference quotient for v converges uniformly (in y) to the derivative
and hence the integral converges and the derivative of the convolution exists,

(4.182)
d

dx
u ∗ v(x) = u ∗ (

dv

dx
).

This result allows immediate iteration, showing that the convolution is smooth and
we know that it has compact support

Proposition 4.7. For any u ∈ Cc(R) there exists un → u uniformly on R
where un ∈ C∞c (R) with supports in a fixed compact set.

Proof. For each ε > 0 consider the rescaled bump function

(4.183) ψε = ε−1ψ(
x

ε
) ∈ C∞c (R).

In fact, ψε vanishes outside the interval (ε, ε), is positive within this interval and
has integral 1 – which is what the factor of ε−1 does. Now set

(4.184) uε = u ∗ ψε ∈ C∞c (R), ε > 0,

from what we have just seen. From the supports of these functions, uε vanishes
outside [−R−ε, R+ε] if u vanishes outside [−R,R]. So only the convergence remains.
To get this we use the fact that the integral of ψε is equal to 1 to write

(4.185) uε(x)− u(x) =

∫
(u(x− y)ψε(y)− u(x)ψε(y))dy.
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Estimating the integral using the positivity of the bump function

(4.186) |uε(x)− u(x)| =
∫ ε

−ε
|u(x− y)− u(x)|ψε(y)dy.

By the uniformity of a continuous function on a compact set, given δ > 0 there
exists ε > 0 such that

sup
[−ε,ε]

|u(x− y)− y(x)| < δ ∀ x ∈ R.

So the uniform convergence follows:-

(4.187) sup |uε(x)− u(x)| ≤ δ
∫
φε = δ

Pass to a sequence εn → 0 if you wish, �

Corollary 4.1. The spaces C∞c (R) and S(R) are dense in L2(R).

Uniform convegence of continuous functions with support in a fixed subset is
stronger than L2 convergence, so the result follows from the Proposition above for
C∞c (R) ⊂ S(R).

9. Plancherel and Parseval

But which is which?
We proceed to show that F and G, defined in (4.137) and (4.145), both extend

to isomorphisms of L2(R) which are inverses of each other. The main step is to
show that

(4.188)

∫
u(x)v̂(x)dx =

∫
û(ξ)v(ξ)dξ, u, v ∈ S(R).

Since the integrals are rapidly convergent at infinity we may substitute the definite
of the Fourier transform into (4.188), write the result out as a double integral and
change the order of integration

(4.189)

∫
u(x)v̂(x)dx =

∫
u(x)

∫
e−ixξv(ξ)dξdx

=

∫
v(ξ)

∫
e−ixξu(x)dxdξ =

∫
û(ξ)v(ξ)dξ.

Now, if w ∈ S(R) we may replace v(ξ) by ŵ(ξ), since it is another element of
S(R). By the Fourier Inversion formula,

(4.190) w(x) = (2π)−1

∫
e−ixξŵ(ξ) =⇒ w(x) = (2π)−1

∫
eixξŵ(ξ) = (2π)−1v̂.

Substituting these into (4.188) gives Parseval’s formula

(4.191)

∫
uw =

1

2π

∫
ûŵ, u, w ∈ S(R).

Proposition 4.8. The Fourier transform F extends from S(R) to an isomor-
phism on L2(R) with 1√

2π
F an isometric isomorphism with adjoint, and inverse,

√
2πG.
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Proof. Setting u = w in (4.191) shows that

(4.192) ‖F(u)‖L2 =
√

2π‖u‖L2

for all u ∈ S(R). The density of S(R), established above, then implies that F
extends by continuity to the whole of L2(R) as indicated. �

This isomorphism of L2(R) has many implications. For instance, we would
like to define the Sobolev space H1(R) by the conditions that u ∈ L2(R) and
du
dx ∈ L

2(R) but to do this we would need to make sense of the derivative. However,
we can ‘guess’ that if it exists, the Fourier transform of du/dx should be iξû(ξ).
For a function in L2, such as û given that u ∈ L2, we do know what it means to
require ξû(ξ) ∈ L2(R). We can then define the Sobolev spaces of any positive, even
non-integral, order by

(4.193) Hr(R) = {u ∈ L2(R); |ξ|rû ∈ L2(R)}.

Of course it would take us some time to investigate the properties of these spaces!

10. Weak and strong derivatives

In approaching the issue of the completeness of the eigenbasis for harmonic
oscillator more directly, rather than by the kernel method discussed above, we run
into the issue of weak and strong solutions of differential equations. Suppose that
u ∈ L2(R), what does it mean to say that du

dx ∈ L
2(R). For instance, we will want

to understand what the ‘possible solutions of’

(4.194) Anu = f, u, f ∈ L2(R), An =
d

dx
+ x

are. Of course, if we assume that u is continuously differentiable then we know
what this means, but we need to consider the possibilities of giving a meaning to
(4.194) under more general conditions – without assuming too much regularity on
u (or any at all).

Notice that there is a difference between the two terms in Anu = du
dx + xu. If

u ∈ L2(R) we can assign a meaning to the second term, xu, since we know that
xu ∈ L2

loc(R). This is not a normed space, but it is a perfectly good vector space,
in which L2(R) ‘sits’ – if you want to be pedantic it naturally injects into it. The
point however, is that we do know what the statement xu ∈ L2(R) means, given
that u ∈ L2(R), it means that there exists v ∈ L2(R) so that xu = v in L2

loc(R)
(or L2

loc(R)). The derivative can actually be handled in a similar fashion using the
Fourier transform but I will not do that here.

Rather, consider the following three ‘L2-based notions’ of derivative.

Definition 4.5. (1) We say that u ∈ L2(R) has a Sobolev derivative if
there exists a sequence φn ∈ C1

c (R) such that φn → u in L2(R) and φ′n → v

in L2(R), φ′n = dφn
dx in the usual sense of course.

(2) We say that u ∈ L2(R) has a strong derivative (in the L2 sense) if the
limit

(4.195) lim
06=s→0

u(x+ s)− u(x)

s
= ṽ exists in L2(R).
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(3) Thirdly, we say that u ∈ L2(R) has a weak derivative in L2 if there exists
w ∈ L2(R) such that

(4.196) (u,− df
dx

)L2 = (w, f)L2 ∀ f ∈ C1
c (R).

In all cases, we will see that it is justified to write v = ṽ = w = du
dx because these

defintions turn out to be equivalent. Of course if u ∈ C1
c (R) then u is differentiable

in each sense and the derivative is always du/dx – note that the integration by parts
used to prove (4.196) is justified in that case. In fact we are most interested in the
first and third of these definitions, the first two are both called ‘strong derivatives.’

It is easy to see that the existence of a Sobolev derivative implies that this
is also a weak derivative. Indeed, since φn, the approximating sequence whose
existence is the definition of the Sobolev derivative, is in C1

c (R) the integration by
parts implicit in (4.196) is valid and so for all f ∈ C1

c (R),

(4.197) (φn,−
df

dx
)L2 = (φ′n, f)L2 .

Since φn → u in L2 and φ′n → v in L2 both sides of (4.197) converge to give the
identity (4.196).

Before proceeding to the rest of the equivalence of these definitions we need
to do some preparation. First let us investigate a little the consequence of the
existence of a Sobolev derivative.

Lemma 4.11. If u ∈ L2(R) has a Sobolev derivative then u ∈ C(R) and there
exists a uniquely defined element w ∈ L2(R) such that

(4.198) u(x)− u(y) =

∫ x

y

w(s)ds ∀ y ≤ x ∈ R.

Proof. Suppose u has a Sobolev derivative, determined by some approximat-
ing sequence φn. Consider a general element ψ ∈ C1

c (R). Then φ̃n = ψφn is a

sequence in C1
c (R) and φ̃n → ψu in L2. Moreover, by the product rule for standard

derivatives

(4.199)
d

dx
φ̃n = ψ′φn + ψφ′n → ψ′u+ ψw in L2(R).

Thus in fact ψu also has a Sobolev derivative, namely φ′u+ψw if w is the Sobolev
derivative for u given by φn – which is to say that the product rule for derivatives
holds under these conditions.

Now, the formula (4.198) comes from the Fundamental Theorem of Calculus

which in this case really does apply to φ̃n and shows that

(4.200) ψ(x)φn(x)− ψ(y)φn(y) =

∫ x

y

dφ̃n
ds

(s)ds.

For any given x = x̄ we can choose ψ so that ψ(x̄) = 1 and then we can take y
below the lower limit of the support of ψ so ψ(y) = 0. It follows that for this choice
of ψ,

(4.201) φn(x̄) =

∫ x̄

y

(ψ′φn(s) + ψφ′n(s))ds.

Now, we can pass to the limit as n→∞ and the left side converges for each fixed x̄
(with ψ fixed) since the integrand converges in L2 and hence in L1 on this compact
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interval. This actually shows that the limit φn(x̄) must exist for each fixed x̄. In
fact we can always choose ψ to be constant near a particular point and apply this
argument to see that

(4.202) φn(x)→ u(x) locally uniformly on R.

That is, the limit exists locally uniformly, hence represents a continuous function
but that continuous function must be equal to the original u almost everywhere
(since ψφn → ψu in L2).

Thus in fact we conclude that ‘u ∈ C(R)’ (which really means that u has a
representative which is continuous). Not only that but we get (4.198) from passing
to the limit on both sides of

(4.203) u(x)− u(y) = lim
n→∞

(φn(x)− φn(y)) = lim
n→∞

∫ s

y

(φ′(s))ds =

∫ s

y

w(s)ds.

�

One immediate consequence of this is

(4.204) The Sobolev derivative is unique if it exists.

Indeed, if w1 and w2 are both Sobolev derivatives then (4.198) holds for both of
them, which means that w2 − w1 has vanishing integral on any finite interval and
we know that this implies that w2 = w1 a.e.

So at least for Sobolev derivatives we are now justified in writing

(4.205) w =
du

dx

since w is unique and behaves like a derivative in the integral sense that (4.198)
holds.

Lemma 4.12. If u has a Sobolev derivative then u has a strong derivative and
if u has a strong derivative then this is also a weak derivative.

Proof. If u has a Sobolev derivative then (3.17) holds. We can use this to
write the difference quotient as

(4.206)
u(x+ s)− u(x)

s
− w(x) =

1

s

∫ s

0

(w(x+ t)− w(x))dt

since the integral in the second term can be carried out. Using this formula twice
the square of the L2 norm, which is finite, is

(4.207) ‖u(x+ s)− u(x)

s
− w(x)‖2L2

=
1

s2

∫ ∫ s

0

∫ s

0

(w(x+ t)− w(x)(w(x+ t′)− w(x))dtdt′dx.

There is a small issue of manupulating the integrals, but we can always ‘back off
a little’ and replace u by the approximating sequence φn and then everything is
fine – and we only have to check what happens at the end. Now, we can apply the
Cauchy-Schwarz inequality as a triple integral. The two factors turn out to be the
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same so we find that

(4.208) ‖u(x+ s)− u(x)

s
− w(x)‖2L2 ≤

1

s2

∫ ∫ s

0

∫ s

0

|w(x+ t)− w(x)|2dtdt′dx

=
1

s

∫ s

0

∫
|w(x+ t)− w(x)|2dxdt

since the integrand does not depend on t′.
Now, something we checked long ago was that L2 functions are ‘continuous in

the mean’ in the sense that

(4.209) lim
06=t→0

∫
|w(x+ t)− w(x)|2dx = 0.

Applying this to (4.208) and then estimating the t integral shows that

(4.210)
u(x+ s)− u(x)

s
− w(x)→ 0 in L2(R) as s→ 0.

By definition this means that u has w as a strong derivative. I leave it up to you
to make sure that the manipulation of integrals is okay.

So, now suppose that u has a strong derivative, ṽ. Observe that if f ∈ C1
c (R)

then the limit defining the derivative

(4.211) lim
06=s→0

f(x+ s)− f(x)

s
= f ′(x)

is uniform. In fact this follows by writing down the Fundamental Theorem of
Calculus, as in (4.198), again using the properties of Riemann integrals. Now,
consider

(4.212)
(u(x),

f(x+ s)− f(x)

s
)L2 =

1

s

∫
u(x)f(x+ s)dx− 1

s

∫
u(x)f(x)dx

= (
u(x− s)− u(x)

s
, f(x))L2

where we just need to change the variable of integration in the first integral from
x to x + s. However, letting s → 0 the left side converges because of the uniform
convergence of the difference quotient and the right side converges because of the
assumed strong differentiability and as a result (noting that the parameter on the
right is really −s)

(4.213) (u,
df

dx
)L2 = −(w, f)L2 ∀ f ∈ C1

c (R)

which is weak differentiability with derivative ṽ. �

So, at this point we know that Sobolev differentiabilty implies strong differen-
tiability and either of the stong ones implies the weak. So it remains only to show
that weak differentiability implies Sobolev differentiability and we can forget about
the difference!

Before doing that, note again that a weak derivative, if it exists, is unique –
since the difference of two would have to pair to zero in L2 with all of C1

c (R) which
is dense. Similarly, if u has a weak derivative then so does ψu for any ψ ∈ C1

c (R)
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since we can just move ψ around in the integrals and see that

(4.214)

(ψu,− df
dx

) = (u,−ψ df
dx

)

= (u,−dψf
dx

) + (u, ψ′f)

= (w,ψf + (ψ′u, f) = (ψw + ψ′u, f)

which also proves that the product formula holds for weak derivatives.
So, let us consider u ∈ L2

c(R) which does have a weak derivative. To show that
it has a Sobolev derivative we need to construct a sequence φn. We will do this by
convolution.

Lemma 4.13. If µ ∈ Cc(R) then for any u ∈ L2
c(R),

(4.215) µ ∗ u(x) =

∫
µ(x− s)u(s)ds ∈ Cc(R)

and if µ ∈ C1
c (R) then

(4.216) µ ∗ u(x) ∈ C1
c (R),

dµ ∗ u
dx

= µ′ ∗ u(x).

It folows that if µ has more continuous derivatives, then so does µ ∗ u.

Proof. Since u has compact support and is in L2 it in L1 so the integral in
(4.215) exists for each x ∈ R and also vanishes if |x| is large enough, since the
integrand vanishes when the supports become separate – for some R, µ(x − s) is
supported in |s − x| ≤ R and u(s) in |s| < R which are disjoint for |x| > 2R. It is
also clear that µ ∗ u is continuous using the estimate (from uniform continuity of
µ)

(4.217) |µ ∗ u(x′)− µ ∗ u(x)| ≤ sup |µ(x− s)− µ(x′ − s)|‖u‖L1 .

Similarly the difference quotient can be written

(4.218)
µ ∗ u(x′)− µ ∗ u(x)

t
=

∫
µ(x′ − s)− µ(x− s)

s
u(s)ds

and the uniform convergence of the difference quotient shows that

(4.219)
dµ ∗ u
dx

= µ′ ∗ u.

�

One of the key properties of thes convolution integrals is that we can examine
what happens when we ‘concentrate’ µ. Replace the one µ by the family

(4.220) µε(x) = ε−1µ(
x

ε
), ε > 0.

The singular factor here is introduced so that
∫
µε is independent of ε > 0,

(4.221)

∫
µε =

∫
µ ∀ ε > 0.

Note that since µ has compact support, the support of µε is concentrated in |x| ≤ εR
for some fixed R.
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Lemma 4.14. If u ∈ L2
c(R) and 0 ≤ µ ∈ C1

c (R) then

(4.222) lim
0 6=ε→0

µε ∗ u = (

∫
µ)u in L2(R).

In fact there is no need to assume that u has compact support for this to work.

Proof. First we can change the variable of integration in the definition of the
convolution and write it intead as

(4.223) µ ∗ u(x) =

∫
µ(s)u(x− s)ds.

Now, the rest is similar to one of the arguments above. First write out the difference
we want to examine as

(4.224) µε ∗ u(x)− (

∫
µ)(x) =

∫
|s|≤εR

µε(s)(u(x− s)− u(x))ds.

Write out the square of the absolute value using the formula twice and we find that

(4.225)

∫
|µε ∗ u(x)− (

∫
µ)(x)|2dx

=

∫ ∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t)(u(x− s)− u(x))(u(x− s)− u(x))dsdtdx

Now we can write the integrand as the product of two similar factors, one being

(4.226) µε(s)
1
2µε(t)

1
2 (u(x− s)− u(x))

using the non-negativity of µ. Applying the Cauchy-Schwarz inequality to this we
get two factors, which are again the same after relabelling variables, so

(4.227)

∫
|µε∗u(x)−(

∫
µ)(x)|2dx ≤

∫ ∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t)|u(x−s)−u(x)|2.

The integral in x can be carried out first, then using continuity-in-the mean bounded
by J(s)→ 0 as ε→ 0 since |s| < εR. This leaves

(4.228)

∫
|µε ∗ u(x)− (

∫
µ)u(x)|2dx

≤ sup
|s|≤εR

J(s)

∫
|s|≤εR

∫
|t|≤εR

µε(s)µε(t) = (

∫
ψ)2Y sup

|s|≤εR
→ 0.

�

After all this preliminary work we are in a position to to prove the remaining
part of ‘weak=strong’.

Lemma 4.15. If u ∈ L2(R) has w as a weak L2-derivative then w is also the
Sobolev derivative of u.

Proof. Let’s assume first that u has compact support, so we can use the
discussion above. Then set φn = µ1/n ∗ u where µ ∈ C1

c (R) is chosen to be non-

negative and have integral
∫
µ = 0; µε is defined in (4.220). Now from Lemma 4.14

it follows that φn → u in L2(R). Also, from Lemma 4.13, φn ∈ C1
c (R) has derivative

given by (4.216). This formula can be written as a pairing in L2 :

(4.229) (µ1/n)′ ∗ u(x) = (u(s),−
dµ1/n(x− s)

ds
)2
L = (w(s),

dµ1/n(x− s)
ds

)L2
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using the definition of the weak derivative of u. It therefore follows from Lemma 4.14
applied again that

(4.230) φ′n = µ/m1/n ∗ w → w in L2(R).

Thus indeed, φn is an approximating sequence showing that w is the Sobolev de-
rivative of u.

In the general case that u ∈ L2(R) has a weak derivative but is not necessarily
compactly supported, consider a function γ ∈ C1

c (R) with γ(0) = 1 and consider
the sequence vm = γ(x)u(x) in L2(R) each element of which has compact support.
Moreover, γ(x/m)→ 1 for each x so by Lebesgue dominated convergence, vm → u
in L2(R) as m→∞. As shown above, vm has as weak derivative

dγ(x/m)

dx
u+ γ(x/m)w =

1

m
γ′(x/m)u+ γ(x/m)w → w

as m → ∞ by the same argument applied to the second term and the fact that
the first converges to 0 in L2(R). Now, use the approximating sequence µ1/n ∗ vm
discussed converges to vm with its derivative converging to the weak derivative of
vm. Taking n = N(m) sufficiently large for each m ensures that φm = µ1/N(m) ∗ vm
converges to u and its sequence of derivatives converges to w in L2. Thus the weak
derivative is again a Sobolev derivative. �

Finally then we see that the three definitions are equivalent and we will freely
denote the Sobolev/strong/weak derivative as du/dx or u′.

11. Fourier transform and L2

Recall that one reason for proving the completeness of the Hermite basis was
to apply it to prove some of the important facts about the Fourier transform, which
we already know is a linear operator

(4.231) L1(R) −→ C∞(R), û(ξ) =

∫
eixξu(x)dx.

Namely we have already shown the effect of the Fourier transform on the ‘ground
state’:

(4.232) F(u0)(ξ) =
√

2πe0(ξ).

By a similar argument we can check that

(4.233) F(uj)(ξ) =
√

2πijuj(ξ) ∀ j ∈ N.

As usual we can proceed by induction using the fact that uj = Cruj−1. The integrals
involved here are very rapidly convergent at infinity, so there is no problem with
the integration by parts in
(4.234)

F(
d

dx
uj−1) = lim

T→∞

∫ T

−T
e−ixξ

duj−1

dx
dx

= lim
T→∞

(∫ T

−T
(iξ)e−ixξuj−1dx+

[
e−ixξuj−1(x)

]T
−T

)
= (iξ)F(uj−1),

F(xuj−1) = i

∫
de−ixξ

dξ
uj−1dx = i

d

dξ
F(uj−1).
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Taken together these identities imply the validity of the inductive step:

(4.235) F(uj) = F((− d

dx
+ x)uj−1) = (i(− d

dξ
+ ξ)F(uj−1) = iCr(

√
2πij−1uj−1)

so proving (4.233).
So, we have found an orthonormal basis for L2(R) with elements which are all

in L1(R) and which are also eigenfunctions for F .

Theorem 4.7. The Fourier transform maps L1(R) ∩ L2(R) into L2(R) and
extends by continuity to an isomorphism of L2(R) such that 1√

2π
F is unitary with

the inverse of F the continuous extension from L1(R) ∩ L2(R) of

(4.236) F(f)(x) =
1

2π

∫
eixξf(ξ).

Proof. This really is what we have already proved. The elements of the
Hermite basis ej are all in both L1(R) and L2(R) so if u ∈ L1(R)∩L2(R) its image
under F is in L2(R) because we can compute the L2 inner products and see that

(4.237) (F(u), ej) =

∫
R2

ej(ξ)e
ixξu(x)dxdξ =

∫
F(ej)(x)u(x) =

√
2πij(u, ej).

Now Bessel’s inequality shows that F(u) ∈ L2(R) (it is of course locally integrable
since it is continuous).

Everything else now follows easily. �

Notice in particular that we have also proved Parseval’s and Plancherel’s identities
for the Fourier transform:-

(4.238) ‖F(u)‖L2 =
√

2π‖u‖L2 , (F(u),F(v)) = 2π(u, v), ∀ u, v ∈ L2(R).

Now there are lots of applications of the Fourier transform which we do not
have the time to get into. However, let me just indicate the definitions of Sobolev
spaces and Schwartz space and how they are related to the Fourier transform.

First Sobolev spaces. We now see that F maps L2(R) isomorphically onto
L2(R) and we can see from (4.234) for instance that it ‘turns differentiations by
x into multiplication by ξ’. Of course we do not know how to differentiate L2

functions so we have some problems making sense of this. One way, the usual
mathematicians trick, is to turn what we want into a definition.

Definition 4.6. The Sobolev spaces of order s, for any s ∈ (0,∞), are defined
as subspaces of L2(R) :

(4.239) Hs(R) = {u ∈ L2(R); (1 + |ξ|2)sû ∈ L2(R)}.

It is natural to identify H0(R) = L2(R).
These Sobolev spaces, for each positive order s, are Hilbert spaces with the

inner product and norm

(4.240) (u, v)Hs =

∫
(1 + |ξ|2)sû(ξ)v̂(ξ), ‖u‖s = ‖(1 + |ξ|2)

s
2 û‖L2 .

That they are pre-Hilbert spaces is clear enough. Completeness is also easy, given
that we know the completeness of L2(R). Namely, if un is Cauchy in Hs(R) then
it follows from the fact that

(4.241) ‖v‖L2 ≤ C‖v‖s ∀ v ∈ Hs(R)
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that un is Cauchy in L2 and also that (1 + |ξ|2)
s
2 ûn(ξ) is Cauchy in L2. Both

therefore converge to a limit u in L2 and the continuity of the Fourier transform
shows that u ∈ Hs(R) and that un → u in Hs.

These spaces are examples of what is discussed above where we have a dense
inclusion of one Hilbert space in another, Hs(R) −→ L2(R). In this case the in-
clusion in not compact but it does give rise to a bounded self-adjoint operator on
L2(R), Es : L2(R) −→ Hs(R) ⊂ L2(R) such that

(4.242) (u, v)L2 = (Esu,Esv)Hs .

It is reasonable to denote this as Es = (1 + |Dx|2)−
s
2 since

(4.243) u ∈ L2(Rn) =⇒ Êsu(ξ) = (1 + |ξ|2)−
s
2 û(ξ).

It is a form of ‘fractional integration’ which turns any u ∈ L2(R) into Esu ∈ Hs(R).
Having defined these spaces, which get smaller as s increases it can be shown for

instance that if n ≥ s is an integer then the set of n times continuously differentiable
functions on R which vanish outside a compact set are dense in Hs. This allows us
to justify, by continuity, the following statement:-

Proposition 4.9. The bounded linear map

(4.244)
d

dx
: Hs(R) −→ Hs−1(R), s ≥ 1, v(x) =

du

dx
⇐⇒ v̂(ξ) = iξû(ξ)

is consistent with differentiation on n times continuously differentiable functions of
compact support, for any integer n ≥ s.

In fact one can even get a ‘strong form’ of differentiation. The condition that
u ∈ H1(R), that u ∈ L2 ‘has one derivative in L2’ is actually equivalent, for
u ∈ L2(R) to the existence of the limit

(4.245) lim
t→0

u(x+ t)u(x)

t
= v, in L2(R)

and then v̂ = iξû. Another way of looking at this is

(4.246)

u ∈ H1(R) =⇒ u : R −→ C is continuous and

u(x)− u(y) =

∫ x

y

v(t)dt, v ∈ L2.

If such a v ∈ L2(R) exists then it is unique – since the difference of two such
functions would have to have integral zero over any finite interval and we know
(from one of the exercises) that this implies that the function vansishes a.e.

One of the more important results about Sobolev spaces – of which there are
many – is the relationship between these ‘L2 derivatives’ and ‘true derivatives’.

Theorem 4.8 (Sobolev embedding). If n is an integer and s > n+ 1
2 then

(4.247) Hs(R) ⊂ Cn∞(R)

consists of n times continuosly differentiable functions with bounded derivatives to
order n (which also vanish at infinity).

This is actually not so hard to prove, there are some hints in the exercises below.
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These are not the only sort of spaces with ‘more regularity’ one can define
and use. For instance one can try to treat x and ξ more symmetrically and define
smaller spaces than the Hs above by setting

(4.248) Hs
iso(R) = {u ∈ L2(R); (1 + |ξ|2)

s
2 û ∈ L2(R), (1 + |x|2)

s
2u ∈ L2(R)}.

The ‘obvious’ inner product with respect to which these ‘isotropic’ Sobolev
spaces Hs

iso(R) are indeed Hilbert spaces is

(4.249) (u, v)s,iso =

∫
R
uv +

∫
R
|x|2suv +

∫
R
|ξ|2sûv̂

which makes them look rather symmetric between u and û and indeed

(4.250) F : Hs
iso(R) −→ Hs

iso(R) is an isomorphism ∀ s ≥ 0.

At this point, by dint of a little, only moderately hard, work, it is possible to
show that the harmonic oscillator extends by continuity to an isomorphism

(4.251) H : Hs+2
iso (R) −→ Hs

iso(R) ∀ s ≥ 2.

Finally in this general vein, I wanted to point out that Hilbert, and even Ba-
nach, spaces are not the end of the road! One very important space in relation to
a direct treatment of the Fourier transform, is the Schwartz space. The definition
is reasonably simple. Namely we denote Schwartz space by S(R) and say

(4.252)

u ∈ S(R)⇐⇒ u : R −→ C
is continuously differentiable of all orders and for every n,

‖u‖n =
∑

k+p≤n

sup
x∈R

(1 + |x|)k|d
pu

dxp
| <∞.

All these inequalities just mean that all the derivatives of u are ‘rapidly decreasing
at ∞’ in the sense that they stay bounded when multiplied by any polynomial.

So in fact we know already that S(R) is not empty since the elements of the
Hermite basis, ej ∈ S(R) for all j. In fact it follows immediately from this that

(4.253) S(R) −→ L2(R) is dense.

If you want to try your hand at something a little challenging, see if you can check
that

(4.254) S(R) =
⋂
s>0

Hs
iso(R)

which uses the Sobolev embedding theorem above.
As you can see from the definition in (4.252), S(R) is not likely to be a Banach

space. Each of the ‖ · ‖n is a norm. However, S(R) is pretty clearly not going to be
complete with respect to any one of these. However it is complete with respect to
all, countably many, norms. What does this mean? In fact S(R) is a metric space
with the metric

(4.255) d(u, v) =
∑
n

2−n
‖u− v‖n

1 + ‖u− v‖n

as you can check. So the claim is that S(R) is complete as a metric space – such a
thing is called a Fréchet space.
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What has this got to do with the Fourier transform? The point is that
(4.256)

F : S(R) −→ S(R) is an isomorphism and F(
du

dx
) = iξF(u), F(xu) = −idF(u)

dξ

where this now makes sense. The dual space of S(R) – the space of continuous
linear functionals on it, is the space, denoted S ′(R), of tempered distributions on
R.

12. Schwartz distributions

We do not have time in this course to really discuss distributions. Still, it is
a good idea for you to know what they are and why they are useful. Of course
to really appreciate their utility you need to read a bit more than I have here.
First think a little about the Schwartz space S(R) introduced above. The metric in
(4.255) might seem rather mysterious but it has the important property that each
of the norms ‖ · ‖n defines a continuous function S(R) −→ R with respect to this
metric topology. In fact a linear map
(4.257)
T : S(R) −→ C linear is continuous iff ∃ N,C s.t. ‖Tφ‖ ≤ C‖φ‖N ∀ φ ∈ S(R).

So, the continuous linear functionals on S(R) are just those which are continous
with respect to one of the norms.

These functionals are exactly the space of tempered distributions

(4.258) S ′(R) = {T : S(R) −→ C linear and continuous}.

The relationship to functions is that each f ∈ L2(R) (or more generally such that
(1 + |x|)−N ∈ L1(R) for some N) defines an element of S ′(R) by integration:

(4.259) Tf : S(R) 3 φ 7−→
∫
f(x)φ(x) ∈ C =⇒ Tf ∈ S ′(R).

Indeed, this amounts to showing that ‖φ‖L2 is a continuous norm on S(R) (so it
must be bounded by a multiple of one of the ‖φ‖N , which one?)

It is relatively straightforward to show that L2(R) 3 f 7−→ Tf ∈ S ′(R) is
injective – nothing is ‘lost’. So after a little more experience with distributions one
comes to identify f and Tf . Notice that this is just an extension of the behaviour of
L2(R) where (because we can drop the complex conjugate in the inner product) by
Riesz’ Theorem we can identify (linearly) L2(R) with it dual, exactly by the map
f 7−→ Tf .

Other elements of S ′(R) include the delta ‘function’ at the origin and even its
‘derivatives’ for each j

(4.260) δj : S(R) 3 φ 7−→ (−1)j
djφ

dxj
(0) ∈ C.

In fact one of the main points about the space S ′(R) is that differentiation and
multiplication by polynomials is well defined

(4.261)
d

dx
: S ′(R) −→ S ′(R), ×x : S ′(R) −→ S ′(R)

in a way that is consistent with their actions under the identification S(R) : φ 7−→
Tφ ∈ S ′(R). This property is enjoyed by other spaces of distributions but the
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fundamental fact that the Fourier transform extends to

(4.262) F : S ′(R) −→ S ′(R) as an isomorphism

is more characteristic of S ′(R).

13. Poisson summation formula

We have talked both about Fourier series and the Fourier transform. It is
natural to ask: What is the connection between these? The Fourier series of a
function in L2(0, 2π) we thought of as given by the Fourier-Bessel series with respect
to the orthonormal basis

(4.263)
exp(ikx)√

2π
, k ∈ Z.

The interval here is just a particular choice – if the upper limit is changed to T
then the corresponding orthonormal basis of L2(0, T ) is

(4.264)
exp(i2πkx/T )√

T
, k ∈ Z.

Sometimes the Fourier transform is thought of as the limit of the Fourier series
expansion when T →∞. This is actually not such a nice limit, so unless you have
(or want) to do this I recommend against it!

A more fundamental relationship between the two comes about as follows. We
can think of L2(0, 2π) as ‘really’ being the 2π-periodic functions restricted to this
interval. Since the values at the end-points don’t matter this does give a bijection –
between 2π-periodic, locally square-integrable functions on the line and L2(0, 2π).
On the other hand we can also think of the periodic functions as being defined on
the circle, |z| = 1 in C or identified with the values of θ ∈ R modulo repeats:

(4.265) T = R/2πZ 3 θ 7−→ eiθ ∈ C.
Let us denote by C∞(T) the space of infinitely differentiable, 2π-periodic func-

tions on the line; this is also the space of smooth functions on the circle, thought
of as a manifold.

How can one construct such functions. There are plenty of examples, for in-
stance the exp(ikx). Another way to construct examples is to sum over translations:-

Lemma 4.16. The map

(4.266) A : S(R) 3 f −→
∑
k∈Z

f(· − 2πk) ∈ C∞(T)

is surjective.

Proof. That the series in (4.266) converges uniformly on [0, 2π] (or any bounded
interval) is easy enought to see, since the rapid decay of elements of S(R) shows
that

(4.267) |f(x)| ≤ C(1 + |x|)−2, x ∈ R =⇒ |f(x− 2πk)| ≤ C ′(1 + |k|)−2, x ∈ [0, 2π]

since if k > 2 |x−2πk| ≥ k if x ∈ [0, 2π]. Clearly (4.267) implies uniform convergence
of the series. Since the derivatives of f are also in S(R) the series obtained by
term-by-term differentiation also converges uniformly and by standard arguments
the limit Ag is therefore infinitely differentiable, with

(4.268)
djAf

dxj
= A

djf

dxj
.
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This shows that the map A, clearly linear, is well-defined. Now, how to see
that it is surjective? Let’s first prove a special case. Indeed, look for a function
ψ ∈ C∞c (R) ⊂ S(R) which is non-negative and such that Aψ = 1. We know that
we can find φ ∈ C∞c (R), φ ≥ 0 with φ > 0 on [0, 2π]. Then consider Aφ ∈ C∞(T).
It must be stricly positive, Aφ ≥ ε > 0 since it is larger that φ. So consider instead
the function

(4.269) ψ =
φ

Aφ
∈ C∞c (R)

where we think of Aφ as 2π-periodic on R. In fact using this periodicity we see that

(4.270) Aψ ≡ 1.

So this shows that the constant function 1 is in the range of A. In general, just
take g ∈ C∞(T), thought of as 2π-periodic on the line, and it follows that

(4.271) f = Bg = ψg ∈ C∞c (R) ⊂ S(R) satsifies Af = g.

Indeed,

(4.272) Ag =
∑
k

ψ(x− 2πk)g(x− 2πk) = g(x)
∑
k

ψ(x− 2πk) = g

using the periodicity of g. In fact B is a right inverse for A,

(4.273) AB = Id on C∞(T).

�

Question 2. What is the null space of A?

Since f ∈ S(R) and Af ∈ C∞(T) ⊂ L2(0, 2π) with our identifications above,
the question arises as to the relationship between the Fourier transform of f and
the Fourier series of Af.

Proposition 4.10 (Poisson summation formula). If g = Af, g ∈ C∞(T) and
f ∈ S(R) then the Fourier coefficients of g are

(4.274) ck =

∫
[0,2π]

ge−ikx = f̂(k).

Proof. Just substitute in the formula for g and, using uniform convergenc,
check that the sum of the integrals gives after translation the Fourier transform of
f. �

If we think of recovering g from its Fourier series,

(4.275) g(x) =
1

2π

∑
k∈Z

cke
ikx =

1

2π

∑
k∈Z

f̂(k)eikx

then in terms of the Fourier transform on S ′(R) alluded to above, this takes the
rather elegant form

(4.276)
1

2π
F

(∑
k∈Z

δ(· − k)

)
(x) =

1

2π

∑
k∈Z

eikx =
∑
k∈Z

δ(x− 2πk).

The sums of translated Dirac deltas and oscillating exponentails all make sense in
S ′(R).


