
CHAPTER 2

The Lebesgue integral

In this second part of the course the basic theory of the Lebesgue integral is
presented. Here I follow an idea of Jan Mikusiński, of completing the space of
step functions on the line under the L1 norm but in such a way that the limiting
objects are seen directly as functions (defined almost everywhere). There are other
places you can find this, for instance the book of Debnaith and Mikusiński [1]. Here
I start from the Riemann integral, since this is a prerequisite of the course; this
streamlines things a little. The objective is to arrive at a working knowledge of
Lebesgue integration as quickly as seems acceptable, to pass on to the discussion
of Hilbert space and then to more analytic questions.

So, the treatment of the Lebesgue integral here is intentionally compressed,
while emphasizing the completeness of the spaces L1 and L2. In lectures everything
is done for the real line but in such a way that the extension to higher dimensions
– carried out partly in the text but mostly in the problems – is not much harder.

1. Integrable functions

Recall that the Riemann integral is defined for a certain class of bounded func-
tions u : [a, b] −→ C (namely the Riemann integrable functions) which includes all
continuous functions. It depends on the compactness of the interval and the bound-
edness of the function, but can be extended to an ‘improper integral’ on the whole
real line for which however some of the good properties fail. This is NOT what
we will do. Rather we consider the space of continuous functions ‘with compact
support’:
(2.1)
Cc(R) = {u : R −→ C;u is continuous and ∃ R such that u(x) = 0 if |x| > R}.

Thus each element u ∈ Cc(R) vanishes outside an interval [−R,R] where the R
depends on the u. Note that the support of a continuous function is defined to be
the complement of the largest open set on which it vanishes (or as the closure of the
set of points at which it is non-zero – make sure you see why these are the same).
Thus (2.1) says that the support, which is necessarily closed, is contained in some
interval [−R,R], which is equivalent to saying it is compact.
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38 2. THE LEBESGUE INTEGRAL

Lemma 2.1. The Riemann integral defines a continuous linear functional on
Cc(R) equipped with the L1 norm

(2.2)

∫
R
u = lim

R→∞

∫
[−R,R]

u(x)dx,

‖u‖L1 = lim
R→∞

∫
[−R,R]

|u(x)|dx,

|
∫
R
u| ≤ ‖u‖L1 .

The limits here are trivial in the sense that the functions involved are constant for
large R.

Proof. These are basic properties of the Riemann integral see Rudin [4]. �

Note that Cc(R) is a normed space with respect to ‖u‖L1 as defined above; that
it is not complete is one of the main reasons for passing to the Lebesgue integral.
With this small preamble we can directly define the ‘space’ of Lebesgue integrable
functions on R.

Definition 2.1. A function f : R −→ C is Lebesgue integrable, written f ∈
L1(R), if there exists a series with partial sums fn =

n∑
j=1

wj , wj ∈ Cc(R) which is

absolutely summable,

(2.3)
∑
j

∫
|wj | <∞

and such that

(2.4)
∑
j

|wj(x)| <∞ =⇒ lim
n→∞

fn(x) =
∑
j

wj(x) = f(x).

This is a somewhat convoluted definition which you should think about a bit.
Its virtue is that it is all there. The problem is that it takes a bit of unravelling. Be-
fore we go any further note that the sequence wj obviously determines the sequence
of partial sums fn, both in Cc(R) but the converse is also true since

(2.5)

w1 = f1, wk = fk − fk−1, k > 1,∑
j

∫
|wj | <∞⇐⇒

∑
k>1

∫
|fk − fk−1| <∞.

You might also notice that can we do some finite manipulation, for instance replace
the sequence wj by

(2.6) W1 =
∑
j≤N

wj , Wk = wN+k−1, k > 1

and nothing much changes, since the convergence conditions in (2.3) and (2.4) are
properties only of the tail of the sequences and the sum in (2.4) for wj(x) converges
if and only if the corresponding sum for Wk(x) converges and then converges to the
same limit.

Before massaging the definition a little, let me give a simple example and check
that this definition does include continuous functions defined on an interval and
extended to be zero outside – the theory we develop will include the usual Riemann
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integral although I will not quite prove this in full, but only because it is not
particularly interesting.

Lemma 2.2. If f ∈ C([a, b]) then

(2.7) f̃(x) =

{
f(x) if x ∈ [a, b]

0 otherwise

is an integrable function.

Proof. Just ‘add legs’ to f̃ by considering the sequence

(2.8) fn(x) =


0 if x < a− 1/n or x > b+ 1/n,

(1 + n(x− a))f(a) if a− 1/n ≤ x < a,

(1− n(x− b))f(b) if b < x ≤ b+ 1/n,

f(x) if x ∈ [a, b].

This is a continuous function on each of the open subintervals in the description
with common limits at the endpoints, so fn ∈ Cc(R). By construction, fn(x)→ f̃(x)
for each x ∈ R. Define the sequence wj which has partial sums the fn, as in (2.5)
above. Then wj = 0 in [a, b] for j > 1 and it can be written in terms of the ‘legs’

ln =

{
0 if x < a− 1/n, x ≥ a
(1 + n(x− a)) if a− 1/n ≤ x < a,

rn =

{
0 if x ≤ b, x > b+ 1/n

(1− n(x− b)) if b ≤ x ≤ b+ 1/n,

as

(2.9) |wn(x)| = (ln − ln−1)|f(a)|+ (rn − rn−1)|f(b)|, n > 1.

It follows that ∫
|wn(x)| = (|f(a)|+ |f(b)|)

n(n− 1)

so {wn} is an absolutely summable sequence showing that f̃ ∈ L1(R). �

Returning to the definition, notice that we only say ‘there exists’ an absolutely
summable sequence and that it is required to converge to the function only at
points at which the pointwise sequence is absolutely summable. At other points
anything is permitted. So it is not immediately clear that there are any functions
not satisfying this condition. Indeed if there was a sequence like wj above with∑
j

|wj(x)| = ∞ always, then (2.4) would represent no restriction at all. So the

point of the definition is that absolute summability – a condition on the integrals
in (2.3) – does imply something about (absolute) convergence of the pointwise
series. Let us reenforce this idea with another definition:-

Definition 2.2. A set E ⊂ R is said to be of measure zero in the sense
of Lebesgue (which is pretty much always the meaning here) if there is a series

gn =
n∑
j=1

vj , vj ∈ Cc(R) which is absolutely summable,
∑
j

∫
|vj | <∞, and such that

(2.10)
∑
j

|vj(x)| =∞ ∀ x ∈ E.
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Notice that we do not require E to be precisely the set of points at which the
series in (2.10) diverges, only that it does so at all points of E, so E is just a subset
of the set on which some absolutely summable series of functions in Cc(R) does
not converge absolutely. So any subset of a set of measure zero is automatically
of measure zero. To introduce the little trickery we use to unwind the definition
above, consider first the following (important) result.

Lemma 2.3. Any finite union of sets of measure zero is a set of measure zero.

Proof. Since we can proceed in steps, it suffices to show that the union of
two sets of measure zero has measure zero. So, let the two sets be E and F and
two corresponding absolutely summable sequences, as in Definition 2.2, be vj and
wj . Consider the alternating sequence

(2.11) uk =

{
vj if k = 2j − 1 is odd

wj if k = 2j is even.

Thus {uk} simply interlaces the two sequences. It follows that uk is absolutely
summable, since

(2.12)
∑
k

‖uk‖L1 =
∑
j

‖vj‖L1 +
∑
j

‖wj‖L1 .

Moreover, the pointwise series
∑
k

|uk(x)| diverges precisely where one or other of

the two series
∑
j

|vj(x)| or
∑
j

|wj(x)| diverges. In particular it must diverge on

E ∪ F which is therefore, from the definition, a set of measure zero. �

The definition of f ∈ L1(R) above certainly requires that the equality on the
right in (2.4) should hold outside a set of measure zero, but in fact a specific one,
the one on which the series on the left diverges. Using the same idea as in the
lemma above we can get rid of this restriction.

Proposition 2.1. If f : R −→ C and there exists a series fn =
n∑
j=1

wj with

wj ∈ Cc(R) which is absolutely summable, so
∑
j

‖wj‖L1 < ∞, and a set E ⊂ R of

measure zero such that

(2.13) x ∈ R \ E =⇒ f(x) = lim
n→∞

fn(x) =

∞∑
j=1

wj(x)

then f ∈ L1(R).

Recall that when one writes down an equality such as on the right in (2.13) one is

implicitly saying that
∞∑
j=1

wj(x) converges and the equality holds for the limit. We

will call a sequence as the wj above an ‘approximating series’ for f ∈ L1(R).
This is indeed a refinement of the definition since all f ∈ L1(R) arise this way,
taking E to be the set where

∑
j

|wj(x)| =∞ for a series as in the defintion.

Proof. By definition of a set of measure zero there is some series vj as in
(2.10). Now, consider the series obtained by alternating the terms between wj , vj
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and −vj . Explicitly, set

(2.14) uj =


wk if j = 3k − 2

vk if j = 3k − 1

−vk(x) if j = 3k.

This defines a series in Cc(R) which is absolutely summable, with

(2.15)
∑
j

‖uj(x)‖L1 =
∑
k

‖wk‖L1 + 2
∑
k

‖vk‖L1 .

The same sort of identity is true for the pointwise series which shows that

(2.16)
∑
j

|uj(x)| <∞ iff
∑
k

|wk(x)| <∞ and
∑
k

|vk(x)| <∞.

So if the pointwise series on the left converges absolutely, then x /∈ E, by definition
and hence, using (2.13), we find that

(2.17)
∑
j

|uj(x)| <∞ =⇒ f(x) =
∑
j

uj(x)

since the sequence of partial sums of the uj cycles through fn, fn(x) + vn(x), then
fn(x) and then to fn+1(x). Since

∑
k

|vk(x)| <∞ the sequence |vn(x)| → 0 so (2.17)

indeed follows from (2.13). �

This is the trick at the heart of the definition of integrability above. Namely
we can manipulate the series involved in this sort of way to prove things about the
elements of L1(R). One point to note is that if wj is an absolutely summable series
in Cc(R) then

(2.18) F (x) =


∑
j

|wj(x)| when this is finite

0 otherwise
=⇒ F ∈ L1(R).

The sort of property (2.13), where some condition holds on the complement
of a set of measure zero is so commonly encountered in integration theory that we
give it a simpler name.

Definition 2.3. A condition that holds on R\E for some set of measure zero,
E, is said to hold almost everywhere. In particular we write

(2.19) f = g a.e. if f(x) = g(x) ∀ x ∈ R \ E, E of measure zero.

Of course as yet we are living dangerously because we have done nothing to
show that sets of measure zero are ‘small’ let alone ‘ignorable’ as this definition
seems to imply. Beware of the trap of ‘proof by declaration’ !

Now Proposition 2.1 can be paraphrased as ‘A function f : R −→ C is Lebesgue
integrable if and only if it is the pointwise sum a.e. of an absolutely summable series
in Cc(R).’



42 2. THE LEBESGUE INTEGRAL

2. Linearity of L1

The word ‘space’ is quoted in the definition of L1(R) above, because it is not
immediately obvious that L1(R) is a linear space, even more importantly it is far
from obvious that the integral of a function in L1(R) is well defined (which is the
point of the exercise after all). In fact we wish to define the integral to be

(2.20)

∫
R
f =

∑
n

∫
wn

where wn ∈ Cc(R) is any ‘approximating series’ meaning now as the wj in Prop-
sition 2.1. This is fine in so far as the series on the right (of complex numbers)
does converge – since we demanded that

∑
n

∫
|wn| < ∞ so this series converges

absolutely – but not fine in so far as the answer might well depend on which series
we choose which ‘approximates f ’ in the sense of the definition or Proposition 2.1.

So, the immediate aim is to prove these two things. First we will do a little
more than prove the linearity of L1(R). Recall that a function is ‘positive’ if it takes
only non-negative values.

Proposition 2.2. The space L1(R) is linear (over C) and if f ∈ L1(R) the
real and imaginary parts, Re f, Im f are Lebesgue integrable as are their positive
parts and as is also the absolute value, |f |. For a real Lebesgue integrable function
there is an approximating sequence as in Proposition 2.1 which is real and if f ≥ 0
the sequence of partial sums can be arranged to be non-negative.

Proof. We first consider the real part of a function f ∈ L1(R). Suppose wn ∈
Cc(R) is an approximating series as in Proposition 2.1. Then consider vn = Rewn.
This is absolutely summable, since

∫
|vn| ≤

∫
|wn| and

(2.21)
∑
n

wn(x) = f(x) =⇒
∑
n

vn(x) = Re f(x).

Since the left identity holds a.e., so does the right and hence Re f ∈ L1(R) by
Proposition 2.1. The same argument with the imaginary parts shows that Im f ∈
L1(R). This also shows that a real element has a real approximating sequence.

The fact that the sum of two integrable functions is integrable really is a simple
consequence of Proposition 2.1 and Lemma 2.3. Indeed, if f, g ∈ L1(R) have
approximating series wn and vn as in Proposition 2.1 then un = wn+vn is absolutely
summable,

(2.22)
∑
n

∫
|un| ≤

∑
n

∫
|wn|+

∑
n

∫
|vn|

and ∑
n

wn(x) = f(x),
∑
n

vn(x) = g(x) =⇒
∑
n

un(x) = f(x) + g(x).

The first two conditions hold outside (probably different) sets of measure zero, E
and F, so the conclusion holds outside E ∪ F which is of measure zero. Thus
f + g ∈ L1(R). The case of cf for c ∈ C is more obvious.

The proof that |f | ∈ L1(R) if f ∈ L1(R) is similar but perhaps a little trickier.
Again, let {wn} be an approximating series as in the definition showing that f ∈



3. THE INTEGRAL ON L1 43

L1(R). To make a series for |f | we can try the ‘obvious’ thing. Namely we know
that

(2.23)

n∑
j=1

wj(x)→ f(x) if
∑
j

|wj(x)| <∞

so certainly it follows that

|
n∑
j=1

wj(x)| → |f(x)| if
∑
j

|wj(x)| <∞.

So, set

(2.24) v1(x) = |w1(x)|, vk(x) = |
k∑
j=1

wj(x)| − |
k−1∑
j=1

wj(x)| ∀ x ∈ R.

Then, for sure,

(2.25)

N∑
k=1

vk(x) = |
N∑
j=1

wj(x)| → |f(x)| if
∑
j

|wj(x)| <∞.

So equality holds off a set of measure zero and we only need to check that {vj} is
an absolutely summable series.

The triangle inequality in the ‘reverse’ form ||v|− |w|| ≤ |v−w| shows that, for
k > 1,

(2.26) |vk(x)| = ||
k∑
j=1

wj(x)| − |
k−1∑
j=1

wj(x)|| ≤ |wk(x)|.

Thus

(2.27)
∑
k

∫
|vk| ≤

∑
k

∫
|wk| <∞

so the vk’s do indeed form an absolutely summable series and (2.25) holds almost
everywhere, so |f | ∈ L1(R).

For a positive function this last argument yields a real approximating sequence
with positive partial sums. �

By combining these results we can see again that if f, g ∈ L1(R) are both real
valued then

(2.28) f+ = max(f, 0), max(f, g), min(f, g) ∈ L1(R).

Indeed, the positive part, f+ = 1
2 (|f | + f), max(f, g) = g + (f − g)+, min(f, g) =

−max(−f,−g).

3. The integral on L1

Next we want to show that the integral is well defined via (2.20) for any approx-
imating series. From Propostion 2.2 it is enough to consider only real functions.
For this, recall a result concerning a case where uniform convergence of continu-
ous functions follows from pointwise convergence, namely when the convergence is
monotone, the limit is continuous, and the space is compact. It works on a general
compact metric space but we can concentrate on the case at hand.
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Lemma 2.4. If un ∈ Cc(R) is a decreasing sequence of non-negative functions
such that limn→∞ un(x) = 0 for each x ∈ R then un → 0 uniformly on R and

(2.29) lim
n→∞

∫
un = 0.

Proof. Since all the un(x) ≥ 0 and they are decreasing (which really means
not increasing of course) if u1(x) vanishes at x then all the other un(x) vanish there
too. Thus there is one R > 0 such that un(x) = 0 if |x| > R for all n, namely
one that works for u1. So we only need consider what happens on [−R,R] which is
compact. For any ε > 0 look at the sets

Sn = {x ∈ [−R,R];un(x) ≥ ε}.
This can also be written Sn = u−1

n ([ε,∞)) ∩ [−R,R] and since un is continuous it
follows that Sn is closed and hence compact. Moreover the fact that the un(x) are
decreasing means that Sn+1 ⊂ Sn for all n. Finally,⋂

n

Sn = ∅

since, by assumption, un(x)→ 0 for each x. Now the property of compact sets in a
metric space that we use is that if such a sequence of decreasing compact sets has
empty intersection then the sets themselves are empty from some n onwards. This
means that there exists N such that supx un(x) < ε for all n > N. Since ε > 0 was
arbitrary, un → 0 uniformly.

One of the basic properties of the Riemann integral is that the integral of the
limit of a uniformly convergent sequence (even of Riemann integrable functions but
here continuous) is the limit of the sequence of integrals, which is (2.29) in this
case. �

We can easily extend this in a useful way – the direction of monotonicity is
reversed really just to mentally distinquish this from the preceding lemma.

Lemma 2.5. If vn ∈ Cc(R) is any increasing sequence such that limn→∞ vn(x) ≥
0 for each x ∈ R (where the possibility vn(x)→∞ is included) then

(2.30) lim
n→∞

∫
vndx ≥ 0 including possibly +∞.

Proof. This is really a corollary of the preceding lemma. Consider the se-
quence of functions

(2.31) wn(x) =

{
0 if vn(x) ≥ 0

−vn(x) if vn(x) < 0.

Since this is the maximum of two continuous functions, namely −vn and 0, it is
continuous and it vanishes for large x, so wn ∈ Cc(R). Since vn(x) is increasing,
wn is decreasing and it follows that limwn(x) = 0 for all x – either it gets there
for some finite n and then stays 0 or the limit of vn(x) is zero. Thus Lemma 2.4
applies to wn so

lim
n→∞

∫
R
wn(x)dx = 0.

Now, vn(x) ≥ −wn(x) for all x, so for each n,
∫
vn ≥ −

∫
wn. From properties of

the Riemann integral, vn+1 ≥ vn implies that
∫
vndx is an increasing sequence and

it is bounded below by one that converges to 0, so (2.30) is the only possibility. �
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From this result applied carefully we see that the integral behaves sensibly for
absolutely summable series.

Lemma 2.6. Suppose un ∈ Cc(R) is an absolutely summable series of real-valued
functions, so

∑
n

∫
|un|dx <∞, and also suppose that

(2.32)
∑
n

un(x) = 0 a.e.

then

(2.33)
∑
n

∫
undx = 0.

Proof. As already noted, the series (2.33) does converge, since the inequality
|
∫
undx| ≤

∫
|un|dx shows that it is absolutely convergent (hence Cauchy, hence

convergent).
If E is a set of measure zero such that (2.32) holds on the complement then

we can modify un as in (2.14) by adding and subtracting a non-negative absolutely
summable sequence vk which diverges absolutely on E. For the new sequence un
(2.32) is strengthened to

(2.34)
∑
n

|un(x)| <∞ =⇒
∑
n

un(x) = 0

and the conclusion (2.33) holds for the new sequence if and only if it holds for the
old one.

Now, we need to get ourselves into a position to apply Lemma 2.5. To do
this, just choose some integer N (large but it doesn’t matter yet) and consider the
sequence of functions – it depends on N but I will suppress this dependence –

(2.35) U1(x) =

N+1∑
n=1

un(x), Uj(x) = |uN+j(x)|, j ≥ 2.

This is a sequence in Cc(R) and it is absolutely summable – the convergence of∑
j

∫
|Uj |dx only depends on the ‘tail’ which is the same as for un. For the same

reason,

(2.36)
∑
j

|Uj(x)| <∞⇐⇒
∑
n

|un(x)| <∞.

Now the sequence of partial sums

(2.37) gp(x) =

p∑
j=1

Uj(x) =

N+1∑
n=1

un(x) +

p∑
j=2

|uN+j |

is increasing with p – since we are adding non-negative functions. If the two equiv-
alent conditions in (2.36) hold then

(2.38)
∑
n

un(x) = 0 =⇒
N+1∑
n=1

un(x) +

∞∑
j=2

|uN+j(x)| ≥ 0 =⇒ lim
p→∞

gp(x) ≥ 0,

since we are only increasing each term. On the other hand if these conditions do
not hold then the tail, any tail, sums to infinity so

(2.39) lim
p→∞

gp(x) =∞.
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Thus the conditions of Lemma 2.5 hold for gp and hence

(2.40)

N+1∑
n=1

∫
un +

∑
j≥N+2

∫
|uj(x)|dx ≥ 0.

Using the same inequality as before this implies that

(2.41)

∞∑
n=1

∫
un ≥ −2

∑
j≥N+2

∫
|uj(x)|dx.

This is true for any N and as N → ∞, limN→∞
∑

j≥N+2

∫
|uj(x)|dx = 0. So

the fixed number on the left in (2.41), which is what we are interested in, must be
non-negative.

In fact the signs in the argument can be reversed, considering instead

(2.42) h1(x) = −
N+1∑
n=1

un(x), hp(x) = |uN+p(x)|, p ≥ 2

and the final conclusion is the opposite inequality in (2.41). That is, we conclude
what we wanted to show, that

(2.43)

∞∑
n=1

∫
un = 0.

�

Finally then we are in a position to show that the integral of an element of
L1(R) is well-defined.

Proposition 2.3. If f ∈ L1(R) then

(2.44)

∫
f = lim

n→∞

∑
n

∫
un

is independent of the approximating sequence, un, used to define it. Moreover,

(2.45)

∫
|f | = lim

N→∞

∫
|
N∑
k=1

uk|,

|
∫
f | ≤

∫
|f | and

lim
n→∞

∫
|f −

n∑
j=1

uj | = 0.

So in some sense the definition of the Lebesgue integral ‘involves no cancellations’.
There are various extensions of the integral which do exploit cancellations – I invite
you to look into the definition of the Henstock integral (and its relatives).

Proof. The uniqueness of
∫
f follows from Lemma 2.6. Namely, if un and u′n

are two series approximating f as in Proposition 2.1 then the real and imaginary
parts of the difference u′n − un satisfy the hypothesis of Lemma 2.6 so it follows
that ∑

n

∫
un =

∑
n

∫
u′n.



4. SUMMABLE SERIES IN L1(R) 47

Then the first part of (2.45) follows from this definition of the integral applied
to |f | and the approximating series for |f | devised in the proof of Proposition 2.2.
The inequality

(2.46) |
∑
n

∫
un| ≤

∑
n

∫
|un|,

which follows from the finite inequalities for the Riemann integrals

|
∑
n≤N

∫
un| ≤

∑
n≤N

∫
|un| ≤

∑
n

∫
|un|

gives the second part.
The final part follows by applying the same arguments to the series {uk}k>n,

as an absolutely summable series approximating f −
n∑
j=1

uj and observing that the

integral is bounded by

(2.47)

∫
|f −

n∑
k=1

uk| ≤
∞∑

k=n+1

∫
|uk| → 0 as n→∞.

�

4. Summable series in L1(R)

The next thing we want to know is when the ‘norm’, which is in fact only a
seminorm, on L1(R), vanishes. That is, when does

∫
|f | = 0? One way is fairly

easy. The full result we are after is:-

Proposition 2.4. For an integrable function f ∈ L1(R), the vanishing of
∫
|f |

implies that f is a null function in the sense that

(2.48) f(x) = 0 ∀ x ∈ R \ E where E is of measure zero.

Conversely, if (2.48) holds then f ∈ L1(R) and
∫
|f | = 0.

Proof. The main part of this is the first part, that the vanishing of
∫
|f |

implies that f is null. The converse is the easier direction in the sense that we have
already done it.

Namely, if f is null in the sense of (2.48) then |f | is the limit a.e. of the
absolutely summable series with all terms 0. It follows from the definition of the
integral above that |f | ∈ L1(R) and

∫
|f | = 0. �

For the forward argument we will use the following more technical result, which
is also closely related to the completeness of L1(R) (note the small notational
difference, L1 is the Banach space which is the quotient by the null functions,
see below).

Proposition 2.5. If fn ∈ L1(R) is an absolutely summable series, meaning
that

∑
n

∫
|fn| <∞, then

(2.49) E = {x ∈ R;
∑
n

|fn(x)| =∞} has measure zero.

If f : R −→ C satisfies

(2.50) f(x) =
∑
n

fn(x) a.e.
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then f ∈ L1(R),

(2.51)

∫
f =

∑
n

∫
fn,

|
∫
f | ≤

∫
|f | = lim

n→∞

∫
|
n∑
j=1

fj | ≤
∑
j

∫
|fj | and

lim
n→∞

∫
|f −

n∑
j=1

fj | = 0.

This basically says we can replace ‘continuous function of compact support’ by
‘Lebesgue integrable function’ in the definition and get the same result. Of course
this makes no sense without the original definition, so what we are showing is that
iterating it makes no difference – we do not get a bigger space.

Proof. The proof is very like the proof of completeness via absolutely sum-
mable series for a normed space outlined in the preceding chapter.

By assumption each fn ∈ L1(R), so there exists a sequence un,j ∈ Cc(R) with∑
j

∫
|un,j | <∞ and

(2.52)
∑
j

|un,j(x)| <∞ =⇒ fn(x) =
∑
j

un,j(x).

We might hope that f(x) is given by the sum of the un,j(x) over both n and j, but
in general, this double series is not absolutely summable. However we can replace
it by one that is. For each n choose Nn so that

(2.53)
∑
j>Nn

∫
|un,j | < 2−n.

This is possible by the assumed absolute summability – the tail of the series there-
fore being small. Having done this, we replace the series un,j by

(2.54) u′n,1 =
∑
j≤Nn

un,j(x), u′n,j(x) = un,Nn+j−1(x) ∀ j ≥ 2,

summing the first Nn terms. This still sums to fn on the same set as in (2.52). So
in fact we can simply replace un,j by u′n,j and we have in addition the estimate

(2.55)
∑
j

∫
|u′n,j | ≤

∫
|fn|+ 2−n+1 ∀ n.

This follows from the triangle inequality since, using (2.53),

(2.56)

∫
|u′n,1 +

N∑
j=2

u′n,j | ≥
∫
|u′n,1| −

∑
j≥2

∫
|u′n,j | ≥

∫
|u′n,1| − 2−n

and the left side converges to
∫
|fn| by (2.45) as N →∞. Using (2.53) again gives

(2.55).
Dropping the primes from the notation and denoting the new series again as un,j

we can let vk be some enumeration of the un,j – using the standard diagonalization
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procedure for instance. This gives a new series of continuous functions of compact
support which is absolutely summable since

(2.57)

N∑
k=1

∫
|vk| ≤

∑
n,j

∫
|un,j | ≤

∑
n

(

∫
|fn|+ 2−n+1) <∞.

Using the freedom to rearrange absolutely convergent series we see that

(2.58)
∑
n,j

|un,j(x)| <∞ =⇒ f(x) =
∑
k

vk(x) =
∑
n

∑
j

un,j(x) =
∑
n

fn(x).

The set where (2.58) fails is a set of measure zero, by definition. Thus f ∈ L1(R)
and (2.49) also follows. To get the final result (2.51), rearrange the double series
for the integral (which is also absolutely convergent). �

For the moment we only need the weakest part, (2.49), of this. To paraphrase
this, for any absolutely summable series of integrable functions the absolute point-
wise series converges off a set of measure zero – it can only diverge on a set of
measure zero. It is rather shocking but this allows us to prove the rest of Proposi-
tion 2.4! Namely, suppose f ∈ L1(R) and

∫
|f | = 0. Then Proposition 2.5 applies

to the series with each term being |f |. This is absolutely summable since all the
integrals are zero. So it must converge pointwise except on a set of measure zero.
Clearly it diverges whenever f(x) 6= 0,

(2.59)

∫
|f | = 0 =⇒ {x; f(x) 6= 0} has measure zero

which is what we wanted to show to finally complete the proof of Proposition 2.4.

5. The space L1(R)

At this point we are able to define the standard Lebesgue space

(2.60) L1(R) = L1(R)/N , N = {null functions}
and to check that it is a Banach space with the norm (arising from, to be pedantic)∫
|f |.

Theorem 2.1. The quotient space L1(R) defined by (2.60) is a Banach space
in which the continuous functions of compact support form a dense subspace.

The elements of L1(R) are equivalence classes of functions

(2.61) [f ] = f +N , f ∈ L1(R).

That is, we ‘identify’ two elements of L1(R) if (and only if) their difference is null,
which is to say they are equal off a set of measure zero. Note that the set which is
ignored here is not fixed, but can depend on the functions.

Proof. For an element of L1(R) the integral of the absolute value is well-
defined by Propositions 2.2 and 2.4

(2.62) ‖[f ]‖L1 =

∫
|f |, f ∈ [f ]

and gives a semi-norm on L1(R). It follows from Proposition 1.5 that on the quo-
tient, ‖[f ]‖ is indeed a norm.

The completeness of L1(R) is a direct consequence of Proposition 2.5. Namely,
to show a normed space is complete it is enough to check that any absolutely
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summable series converges. If [fj ] is an absolutely summable series in L1(R) then
fj is absolutely summable in L1(R) and by Proposition 2.5 the sum of the series
exists so we can use (2.50) to define f off the set E and take it to be zero on E.
Then, f ∈ L1(R) and the last part of (2.51) means precisely that

(2.63) lim
n→∞

‖[f ]−
∑
j<n

[fj ]‖L1 = lim
n→∞

∫
|f −

∑
j<n

fj | = 0

showing the desired completeness. �

Note that despite the fact that it is technically incorrect, everyone says ‘L1(R)
is the space of Lebesgue integrable functions’ even though it is really the space
of equivalence classes of these functions modulo equality almost everywhere. Not
much harm can come from this mild abuse of language.

Another consequence of Proposition 2.5 and the proof above is an extension of
Lemma 2.3.

Proposition 2.6. Any countable union of sets of measure zero is a set of
measure zero.

Proof. If E is a set of measure zero then any function f which is defined
on R and vanishes outside E is a null function – is in L1(R) and has

∫
|f | = 0.

Conversely if the characteristic function of E, the function equal to 1 on E and
zero in R \ E is integrable and has integral zero then E has measure zero. This
is the characterization of null functions above. Now, if Ej is a sequence of sets of
measure zero and χk is the characteristic function of

(2.64)
⋃
j≤k

Ej

then
∫
|χk| = 0 so this is an absolutely summable series with sum, the characteristic

function of the union, integrable and of integral zero. �

6. The three integration theorems

Even though we now ‘know’ which functions are Lebesgue integrable, it is often
quite tricky to use the definitions to actually show that a particular function has
this property. There are three standard results on convergence of sequences of
integrable functions which are powerful enough to cover most situations that arise
in practice – a Monotonicity Lemma, Fatou’s Lemma and Lebesgue’s Dominated
Convergence theorem.

Lemma 2.7 (Montonicity). If fj ∈ L1(R) is a monotone sequence, either
fj(x) ≥ fj+1(x) for all x ∈ R and all j or fj(x) ≤ fj+1(x) for all x ∈ R and
all j, and

∫
fj is bounded then

(2.65) {x ∈ R; lim
j→∞

fj(x) is finite} = R \ E

where E has measure zero and

(2.66)

f = lim
j→∞

fj(x) a.e. is an element of L1(R)

with

∫
f = lim

j→∞

∫
fj and lim

j→∞

∫
|f − fj | = 0.
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In the usual approach through measure one has the concept of a measureable, non-
negative, function for which the integral ‘exists but is infinite’ – we do not have
this (but we could easily do it, or rather you could). Using this one can drop the
assumption about the finiteness of the integral but the result is not significantly
stronger.

Proof. Since we can change the sign of the fi it suffices to assume that the fi
are monotonically increasing. The sequence of integrals is therefore also montonic
increasing and, being bounded, converges. Turning the sequence into a series, by
setting g1 = f1 and gj = fj − fj−1 for j ≥ 2 the gj are non-negative for j ≥ 1 and

(2.67)
∑
j≥2

∫
|gj | =

∑
j≥2

∫
gj = lim

n→∞

∫
fn −

∫
f1

converges. So this is indeed an absolutely summable series. We therefore know from
Proposition 2.5 that it converges absolutely a.e., that the limit, f, is integrable and
that

(2.68)

∫
f =

∑
j

∫
gj = lim

n→∞

∫
fj .

The second part, corresponding to convergence for the equivalence classes in L1(R)
follows from the fact established earlier about |f | but here it also follows from the
monotonicity since f(x) ≥ fj(x) a.e. so

(2.69)

∫
|f − fj | =

∫
f −

∫
fj → 0 as j →∞.

�

Now, to Fatou’s Lemma. This really just takes the monotonicity result and
applies it to a sequence of integrable functions with bounded integral. You should
recall that the max and min of two real-valued integrable functions is integrable
and that

(2.70)

∫
min(f, g) ≤ min(

∫
f,

∫
g).

This follows from the identities

(2.71) 2 max(f, g) = |f − g|+ f + g, 2 min(f, g) = −|f − g|+ f + g.

Lemma 2.8 (Fatou). Let fj ∈ L1(R) be a sequence of real-valued non-negative
integrable functions such that

∫
fj is bounded then

(2.72)

f(x) = lim inf
n→∞

fn(x) exists a.e., f ∈ L1(R) and∫
lim inf fn =

∫
f ≤ lim inf

∫
fn.

Proof. You should remind yourself of the properties of lim inf as necessary!
Fix k and consider

(2.73) Fk,n = min
k≤p≤k+n

fp(x) ∈ L1(R).
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As discussed above this is integrable. Moreover, this is a decreasing sequence, as
n increases, because the minimum is over an increasing set of functions. The Fk,n
are non-negative so Lemma 2.7 applies and shows that

(2.74) gk(x) = inf
p≥k

fp(x) ∈ L1(R),

∫
gk ≤

∫
fn ∀ n ≥ k.

Note that for a decreasing sequence of non-negative numbers the limit exists and
is indeed the infimum. Thus in fact,

(2.75)

∫
gk ≤ lim inf

∫
fn ∀ k.

Now, let k vary. Then, the infimum in (2.74) is over a set which decreases as k
increases. Thus the gk(x) are increasing. The integrals of this sequence are bounded
above in view of (2.75) since we assumed a bound on the

∫
fn’s. So, we can apply

the monotonicity result again to see that

(2.76)

f(x) = lim
k→∞

gk(x) exists a.e and f ∈ L1(R) has∫
f ≤ lim inf

∫
fn.

Since f(x) = lim inf fn(x), by definition of the latter, we have proved the Lemma.
�

Now, we apply Fatou’s Lemma to prove what we are really after:-

Theorem 2.2 (Dominated convergence). Suppose fj ∈ L1(R) is a sequence of
integrable functions such that

(2.77)
∃ h ∈ L1(R) with |fj(x)| ≤ h(x) a.e. and

f(x) = lim
j→∞

fj(x) exists a.e.

then f ∈ L1(R) and [fj ] → [f ] in L1(R), so
∫
f = limn→∞

∫
fn (including the

assertion that this limit exists).

Proof. First, we can assume that the fj are real since the hypotheses hold for
the real and imaginary parts of the sequence and together give the desired result.
Moreover, we can change all the fj ’s to make them zero on the set on which the
initial estimate in (2.77) does not hold. Then this bound on the fj ’s becomes

(2.78) −h(x) ≤ fj(x) ≤ h(x) ∀ x ∈ R.

In particular this means that gj = h − fj is a non-negative sequence of integrable
functions and the sequence of integrals is also bounded, since (2.77) also implies
that

∫
|fj | ≤

∫
h, so

∫
gj ≤ 2

∫
h. Thus Fatou’s Lemma applies to the gj . Since we

have assumed that the sequence gj(x) converges a.e. to h− f we know that

(2.79)

h− f(x) = lim inf gj(x) a.e. and∫
h−

∫
f ≤ lim inf

∫
(h− fj) =

∫
h− lim sup

∫
fj .

Notice the change on the right from liminf to limsup because of the sign.
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Now we can apply the same argument to g′j(x) = h(x) + fj(x) since this is also
non-negative and has integrals bounded above. This converges a.e. to h(x) + f(x)
so this time we conclude that

(2.80)

∫
h+

∫
f ≤ lim inf

∫
(h+ fj) =

∫
h+ lim inf

∫
fj .

In both inequalities (2.79) and (2.80) we can cancel an
∫
h and combining them we

find

(2.81) lim sup

∫
fj ≤

∫
f ≤ lim inf

∫
fj .

In particular the limsup on the left is smaller than, or equal to, the liminf on the
right, for the same real sequence. This however implies that they are equal and
that the sequence

∫
fj converges. Thus indeed

(2.82)

∫
f = lim

n→∞

∫
fn.

Convergence of fn to f in L1(R) follows by applying the results proved so far
to |f − fn|, converging almost everywhere to 0. In this case (2.82) becomes

lim
n→∞

∫
|f − fn| = 0.

�

Generally in applications it is Lebesgue’s dominated convergence which is used
to prove that some function is integrable. Of course, since we deduced it from
Fatou’s lemma, and the latter from the Monotonicity lemma, you might say that
Lebesgue’s theorem is the weakest of the three! However, it is very handy and often
a combination does the trick. For instance

Lemma 2.9. A continuous function u ∈ C(R) is Lebesgue integrable if and only
if the ‘improper Riemann integral’

(2.83) lim
R→∞

∫ R

−R
|u(x)|dx <∞.

Note that the ‘improper integral’ without the absolute value can converge without
u being Lebesgue integrable.

Proof. If (2.83) holds then consider the sequence of functions vN = χ[−N,N ]|u|,
which we know to be in L1(R) by Lemma 2.2. This is monotonic increasing with
limit |u|, so the Monotonicity Lemma shows that |u| ∈ L1(R). Then consider
wN = χ[−N,N ]u which we also know to be in L1(R). Since it is bounded by |u| and

converges pointwise to u, it follows from Dominated Convergence that u ∈ L1(R).
Conversely, if u ∈ L1(R) then |u| ∈ L1(R) and χ[−N,N ]|u| ∈ L1(R) converges to |u|
so by Dominated Convergence (2.83) must hold. �

So (2.83) holds for any u ∈ L1(R).
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7. Notions of convergence

We have been dealing with two basic notions of convergence, but really there
are more. Let us pause to clarify the relationships between these different concepts.

(1) Convergence of a sequence in L1(R) (or by slight abuse of language in
L1(R)) – f and fn ∈ L1(R) and

(2.84) ‖f − fn‖L1 → 0 as n→∞.
(2) Convergence almost everywhere:- For some sequence of functions fn and

function f,

(2.85) fn(x)→ f(x) as n→∞ for x ∈ R \ E
where E ⊂ R is of measure zero.

(3) Dominated convergence:- For fj ∈ L1(R) (or representatives in L1(R))
such that |fj | ≤ F (a.e.) for some F ∈ L1(R) and (2.85) holds.

(4) What we might call ‘absolutely summable convergence’. Thus fn ∈ L1(R)

are such that fn =
n∑
j=1

gj where gj ∈ L1(R) and
∑
j

∫
|gj | <∞. Then (2.85)

holds for some f.
(5) Monotone convergence. For fj ∈ L1(R), real valued and montonic, we

require that
∫
fj is bounded and it then follows that fj → f almost

everywhere, with f ∈ L1(R) and that the convergence is L1 and also that∫
f = limj

∫
fj .

So, one important point to know is that 1 does not imply 2. Nor conversely
does 2 imply 1 even if we assume that all the fj and f are in L1(R).

However, montone convergence implies dominated convergence. Namely if f is
the limit then |fj | ≤ |f | + 2|f1| and fj → f almost everywhere. Also, monotone
convergence implies convergence with absolute summability simply by taking the
sequence to have first term f1 and subsequence terms fj − fj−1 (assuming that fj
is monotonically increasing) one gets an absolutely summable series with sequence
of finite sums converging to f. Similarly absolutely summable convergence implies
dominated convergence for the sequence of partial sums; by montone convergence
the series

∑
n
|fn(x)| converges a.e. and in L1 to some function F which dominates

the partial sums which in turn converge pointwise. I suggest that you make a
diagram with these implications in it so that you are clear about the relationships
between them.

8. The space L2(R)

So far we have discussed the Banach space L1(R). The real aim is to get a
good hold on the (Hilbert) space L2(R). This can be approached in several ways.
We could start off as for L1(R) and define L2(R) as the completion of Cc(R) with
respect to the norm

(2.86) ‖f‖L2 =

(∫
|f |2

) 1
2

.

This would be rather repetitious; instead we adopt an approach based on Dominated
Convergence. You might think, by the way, that it is enough just to ask that
|f |2 ∈ L1(R). This does not work, since even if real the sign of f could jump
around and make it non-integrable (provided you believe in the axiom of choice).
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Nor would this approach work for L1(R) since |f | ∈ L1(R) does not imply that
f ∈ L1(R).

Definition 2.4. A function f : R −→ C is said to be ‘Lebesgue square inte-
grable’, written f ∈ L2(R), if there exists a sequence un ∈ Cc(R) such that

(2.87) un(x)→ f(x) a.e. and |un(x)|2 ≤ F (x) a.e. for some F ∈ L1(R).

Proposition 2.7. The space L2(R) is linear, f ∈ L2(R) implies |f |2 ∈ L1(R)
and (2.86) defines a seminorm on L2(R) which vanishes precisely on the null func-
tions N ⊂ L2(R).

Definition 2.5. We define L2(R) = L(R)/N .

So we know that L2(R) is a normed space. It is in fact complete and much more!

Proof. First to see the linearity of L2(R) note that if f ∈ L2(R) and c ∈ C
then cf ∈ L2(R) since if un is a sequence as in the definition for f then cun is such
a sequence for cf.

Similarly if f, g ∈ L2(R) with sequences un and vn then wn = un + vn has the
first property – since we know that the union of two sets of measure zero is a set
of measure zero and the second follows from the estimate

(2.88) |wn(x)|2 = |un(x) + vn(x)|2 ≤ 2|un(x)|2 + 2|vn(x)|2 ≤ 2(F +G)(x)

where |un(x)|2 ≤ F (x) and |vn(x)|2 ≤ G(x) with F, G ∈ L1(R).
Moreover, if f ∈ L2(R) then the sequence |un(x)|2 converges pointwise almost

everywhere to |f(x)|2 so by Lebesgue’s Dominated Convergence, |f |2 ∈ L1(R). Thus
‖f‖L2 is well-defined. It vanishes if and only if |f |2 ∈ N but this is equivalent to
f ∈ N – conversely N ⊂ L2(R) since the zero sequence works in the definition
above.

So we only need to check the triangle inquality, absolute homogeneity being
clear, to deduce that L2 = L2/N is at least a normed space. In fact we checked
this earlier on Cc(R) and the general case follows by continuity:-

(2.89) ‖un + vn‖L2 ≤ ‖un‖L2 + ‖vn‖L2 ∀ n =⇒
‖f + g‖L2 = lim

n→∞
‖un + vn‖L2 ≤ ‖f‖L2 + ‖g‖L2 .

�

We will get a direct proof of the triangle inequality as soon as we start talking
about (pre-Hilbert) spaces.

So it only remains to check the completeness of L2(R), which is really the whole
point of the discussion of Lebesgue integration.

Theorem 2.3. The space L2(R) is complete with respect to ‖ · ‖L2 and is a
completion of Cc(R) with respect to this norm.

Proof. That Cc(R) ⊂ L2(R) follows directly from the definition and the fact
that a continuous null function must vanish. This is a dense subset since, if f ∈
L2(R) a sequence un ∈ Cc(R) as in Definition 2.4 satisfies

(2.90) |un(x)− um(x)|2 ≤ 4F (x) ∀ n, m,
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and converges almost everwhere to |f(x)−um(x)|2 as n→∞. Thus, by Dominated
Convergence, |f(x) − um(x)|2 ∈ L1(R). As m → ∞, |f(x) − um(x)|2 → 0 almost
everywhere and |f(x)− um(x)|2 ≤ 4F (x) so again by dominated convergence

(2.91) ‖f − um‖L2 =
(
‖(|f − um|2)‖L1)

) 1
2 → 0.

This shows the density of Cc(R) in L2(R), the quotient by the null functions.
To prove completeness, we only need show that any absolutely L2-summable

sequence in Cc(R) converges in L2 and the general case follows by density. So,
suppose φn ∈ Cc(R) is such a sequence:∑

n

‖φn‖L2 <∞.

Consider Fk(x) =

(∑
n≤k
|φk(x)|

)2

. This is an increasing sequence in Cc(R) and its

L1 norm is bounded:

(2.92) ‖Fk‖L1 = ‖
∑
n≤k

|φn|‖2L2 ≤

∑
n≤k

‖φn‖L2

2

≤ C2 <∞

using the triangle inequality and absolutely L2 summability. Thus, by Monotone
Convergence, Fk(x) → F (x) a.e., Fk → F ∈ L1(R) and Fk(x) ≤ F (x) a.e., where
we define F (x) to be the limit when this exists and zero otherwise.

Thus the sequence of partial sums uk(x) =
∑
n≤k

φn(x) converges almost every-

where – since it converges (absoliutely) on the set where Fk is bounded. Let f(x)
be the limit. We want to show that f ∈ L2(R) but this follows from the definition
since

(2.93) |uk(x)|2 ≤ (
∑
n≤k

|φn(x)|)2 = Fk(x) ≤ F (x) a.e.

As in (2.91) it follows that

(2.94)

∫
|uk(x)− f(x)|2 → 0.

As for the case of L1(R) it now follows that L2(R) is complete. �

We want to check that L2(R) is a Hilbert space (which I will define very soon,
even though it is in the next Chapter); to do so observe that if f, g ∈ L2(R)
have approximating sequences un, vn as in Definition 2.4, so |un(x)|2 ≤ F (x) and
|vn(x)|2 ≤ G(x) with F, G ∈ L1(R) then

(2.95) un(x)vn(x)→ f(x)g(x) a.e. and |un(x)vn(x)| ≤ 1

2
(F (x) +G(x))

shows that fg ∈ L1(R) by Dominated Convergence. This leads to the basic property
of the norm on a (pre)-Hilbert space – that it comes from an inner product. In this
case

(2.96) 〈f, g〉L2 =

∫
f(x)g(x), ‖f‖L2 = 〈f, f〉 12 .

At this point I normally move on to the next chapter on Hilbert spaces with
L2(R) as one motivating example.



9. MEASURABLE AND NON-MEASURABLE SETS 57

9. Measurable and non-measurable sets

The σ-algebra of Lebesgue measurable sets on the line is discussed below but
we can directly consider the notion of a set of finite Lebesgue measure. Namely
such a set A ⊂ R is defined by the condition that the chactacteristic function

(2.97) χA(x) =

{
1 if x ∈ A
0 if x /∈ A

is Lebesgue integrable, χA ∈ L1(R). The measure of the set (think ‘length’) is then
µ(A) =

∫
R χA the properties of which are discussed below. Certainly if A ⊂ [−R,R]

has finite measure then µ(A) ≤ 2R from the properties of the integral. Similalry if
Ai ⊂ [−R,R] are a sequence of sets of finite measure which are disjoint, Ai∩Aj = ∅,
i 6= j, then

(2.98) A =
⊔
i

Ai has finite measure and µ(A) =
∑
i

µ(Ai)

using Monotone Convergence.
Now the question arises, enquiring minds want to know after all:- Are there

bounded sets which are not of finite measure? Similarly, are there functions of
bounded support which are not integrable? It turns out this question gets us into
somewhat deep water, but it is important to understand some of the limitiations
that the insistence on precision in Mathematics places on its practitioners!

Let me present a standard construction of a non-(Lebesgue-)measurable subset
of [0, 1] and then comment on the issues that it raises. We start with the quotient
space and quotient map

(2.99) q : R −→ R/Q, q(x) = {y ∈ R; y = x+ r, r ∈ Q}.
This partitions R into disjoint subsets

(2.100) R =
⊔

τ∈R/Q

q−1(τ).

Two of these sets intersect if and only if they have elements differing by a rational,
and then they are the same.

Now, each of these sets q−1(τ) intersects [0, 1]. This follows from the density of
the rationals in the reals, since if x ∈ q−1(τ) there exists r ∈ Q such that |x−r| < 1

2

and then x′ = x+ (−r + 1
2 ) ∈ q−1(τ) ∩ [0, 1]. So we can ‘localize’ (2.100) to

(2.101) [0, 1] =
⊔

τ∈R/Q

L(τ), L(τ) = q−1(τ) ∩ [0, 1]

where all the sets L(τ) are non-empty.

Definition 2.6. A Vitali set, V ⊂ [0, 1], is a set which contains precisely one
element from each of the L(τ).

Take such a set V and consider the translates of it by rationals in [−1, 1],

(2.102) Vr = {y ∈ [−1, 2]; y = x+ r, x ∈ V }, r ∈ Q, |r| ≤ 1.

For different r these are disjoint – since by construction no two distinct elements
of V differ by a rational. The union of these sets however satisfies

(2.103) [0, 1] ⊂
⊔

r∈Q,|r|≤1

Vr ⊂ [−1, 2].
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Now, we can simply order the sets Vr into a sequence Ai by ordering the rationals
in [−1, 1].

Suppose V is of finite Lebesgue measure. Then we know that all the Vr are
of finite measure and µ(Vr) = µ(V ) = µ(Ai) for all i, from the properties of the
Lebesgue integral. This means that (2.98) applies, so we have the inequalities

(2.104) µ([0, 1]) = 1 ≤
∞∑
i=1

µ(V ) ≤ 3 = µ([−1, 2]).

Clearly we have a problem! The only way the right-hand inequality can hold is if
µ(V ) = 0, but then the left-hand inequality fails.

Our conclusion then is that V cannot be Lebesgue measurable! Or is it? Since
we are careful people we trace back through the discussion and see (it took people
a long, long, time to recognize this) more precisely:-

Proposition 2.8. If a Vitali set, V ⊂ [0, 1] exists, containing precisely one
element of each of the sets L(τ), then it is bounded and not of finite Lebesgue
measure; its characteristic function is a non-negative function of bounded support
which is not Lebesgue integrable.

Okay, so what is the ‘issue’ here. It is that the existence of such a Vitali set
requires the Axiom of Choice. There are lots of sets L(τ) so from the standard
(Zermelo-Fraenkel) axions of set theory it does not follow that you can ‘choose an
element from each’ to form a new set. That is a (slightly informal) version of the
additional axiom. Now, it has been shown (namely by Gödel and Cohen) that the
Axiom of Choice is independent of the Zermelo-Fraenkel Axioms. This does not
mean consistency, it means conditional consistency. The Zermelo-Fraenkel axioms
together with the Axiom of Choice are inconsistent if and only if the Zermelo-
Fraenkel axioms on their own are inconsistent.

Conclusion: As a working Mathematician you are free to choose to believe in
the Axiom of Choice or not. It will make your life easier if you do, but it is up to
you. Note that if you do not admit the Axiom of Choice, it does not mean that
all bounded real sets are measurable, in the sense that you can prove it. Rather it
means that it is consistent to believe this (as shown by Solovay).

See also the discussion of the Hahn-Banach Theorem in Section 1.12.

10. Measurable functions

From our original definition of L1(R) we know that Cc(R) is dense in L1(R).
We also know that elements of Cc(R) can be approximated uniformly, and hence in
L1(R) by step functions – finite linear combinations of the characteristic functions
of intervals. It is usual in measure theory to consider a somewhat larger class of
functions which contains the step functions:

Definition 2.7. A simple function on R is a finite linear combination (gener-
ally with complex coefficients) of characteristic functions of subsets of finite mea-
sure:

(2.105) f =

N∑
j=1

cjχ(Bj), χ(Bj) ∈ L1(R), cj ∈ C.

The real and imaginary parts of a simple function are simple and the positive
and negative parts of a real simple function are simple. Since step functions are
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simple, we know that simple functions are dense in L1(R) and that if 0 ≤ F ∈ L1(R)
then there exists a sequence of simple functions (take them to be a summable
sequence of step functions) fn ≥ 0 such that fn → F almost everywhere and
fn ≤ G for some other G ∈ L1(R).

We elevate a special case of the second notion of convergence above to a defi-
nition.

Definition 2.8. A function f : R −→ C is (Lebesgue) measurable if it is the
pointwise limit almost everywhere of a sequence of simple functions.

Lemma 2.10. A function is Lebesgue measurable if and only if it is the pointwise
limit, almost everywhere, of a sequence of continuous functions of compact support.

Proof. Continuous functions of compact support are the uniform limits of
step functions, so this condition certainly implies measurability in the sense of
Definition 2.8. Conversely, suppose a function f is the limit almost everywhere
of a squence un of simple functions. Each of these functions is integrable, so we
can find φn ∈ Cc(R) such that ‖un − φn‖L1 < 2−n. Then the telescoped sequence
v1 = u1 − φ1, vk = (uk − φk) − (uk−1 − φk−1), k > 1, is absolutely summable so
un − φn → 0 almost everywhere, and hence φn → f off a set of measure zero. �

So replacing ‘simple functions’ by continuous functions in Definition 2.8 makes
no difference – and the same for approximation by elements of L1(R).

The measurable functions form a linear space since if f and g are measurable
and fn, gn are sequences of simple functions as required by the definition then
c1fn(x) + c2f2(x)→ c1f(x) + c2g(x) on the intersection of the sets where fn(x)→
f(x) and gn(x)→ g(x) which is the complement of a set of measure zero.

Now, from the discussion above, we know that each element of L1(R) is mea-
surable. Conversely:

Lemma 2.11. A function f : R −→ C is an element of L1(R) if and only if it
is measurable and there exists F ∈ L1(R) such that |f | ≤ F almost everywhere.

Proof. If f is measurable there exists a sequence of simple functions fn such
that fn → f almost everywhere. The real part, Re f, is also measurable as the
limit almost everywhere of Re fn and from the hypothesis |Re f | ≤ F. We know
that there exists a sequence of simple functions gn, gn → F almost everywhere and
0 ≤ gn ≤ G for another element G ∈ L1(R). Then set

(2.106) un(x) =


gn(x) if Re fn(x) > gn(x)

Re fn(x) if − gn(x) ≤ Re fn(x) ≤ gn(x)

−gn(x) if Re fn(x) < −gn(x).

Thus un = max(vn,−gn) where vn = min(Re fn, gn) so un is simple and un → f
almost everywhere. Since |un| ≤ G it follows from Lebesgue Dominated Conver-
gence that Re f ∈ L1(R). The same argument shows Im f = −Re(if) ∈ L1(R) so
f ∈ L1(R) as claimed. �

11. The spaces Lp(R)

We use Lemma 2.11 as a model:
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Definition 2.9. For 1 ≤ p <∞ we set

(2.107) Lp(R) = {f : R −→ C; f is measurable and |f |p ∈ L1(R)}.
For p =∞ we set

(2.108) L∞(R) = {f : R −→ C; f measurable and ∃ C s.t. |f(x)| ≤ C a.e}

Observe that, in view of Lemma 2.10, the case p = 2 gives the same space as
Definition 2.4.

Proposition 2.9. For each 1 ≤ p <∞,

(2.109) ‖u‖Lp =

(∫
|u|p

) 1
p

is a seminorm on the linear space Lp(R) vanishing only on the null functions and
making the quotient Lp(R) = Lp(R)

/
N into a Banach space.

Proof. The real part of an element of Lp(R) is in Lp(R) since it is measurable
and |Re f |p ≤ |f |p so |Re f |p ∈ L1(R). Similarly, Lp(R) is linear; it is clear that
cf ∈ Lp(R) if f ∈ Lp(R) and c ∈ C and the sum of two elements, f, g, is measurable
and satisfies |f + g|p ≤ 2p(|f |p + |g|p) so |f + g|p ∈ L1(R).

We next strengthen (2.107) to the approximation condition that there exists a
sequence of simple functions vn such that

(2.110) vn → f a.e. and |vn|p ≤ F ∈ L1(R) a.e.

which certainly implies (2.107). As in the proof of Lemma 2.11, suppose f ∈
Lp(R) is real and choose fn real-valued simple functions and converging to f almost
everywhere. Since |f |p ∈ L1(R) there is a sequence of simple functions 0 ≤ hn such
that |hn| ≤ F for some F ∈ L1(R) and hn → |f |p almost everywhere. Then set

gn = h
1
p
n which is also a sequence of simple functions and define vn by (2.106). It

follows that (2.110) holds for the real part of f but combining sequences for real
and imaginary parts such a sequence exists in general.

The advantage of the approximation condition (2.110) is that it allows us to
conclude that the triangle inequality holds for ‖u‖Lp defined by (2.109) since we
know it for simple functions and from (2.110) it follows that |vn|p → |f |p in L1(R)
so ‖vn‖Lp → ‖f‖Lp . Then if wn is a similar sequence for g ∈ Lp(R)
(2.111)
‖f+g‖Lp ≤ lim sup

n
‖vn+wn‖Lp ≤ lim sup

n
‖vn‖Lp+lim sup

n
‖wn‖Lp = ‖f‖Lp+‖g‖Lp .

The other two conditions being clear it follows that ‖u‖Lp is a seminorm on Lp(R).
The vanishing of ‖u‖Lp implies that |u|p and hence u ∈ N and the converse

follows immediately. Thus Lp(R) = Lp(R)
/
N is a normed space and it only remains

to check completeness.
We know that completeness is equivalent to the convergence of any absolutely

summable series. So, we can suppose fn ∈ Lp(R) have

(2.112)
∑
n

(∫
|fn|p

) 1
p

<∞.

Consider the sequence gn = fnχ[−R,R] for some fixed R > 0. This is in L1(R) and

(2.113) ‖gn‖L1 ≤ (2R)
1
q ‖fn‖Lp
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by the integral form of Hölder’s inequality
(2.114)

f ∈ Lp(R), g ∈ Lq(R),
1

p
+

1

q
= 1 =⇒ fg ∈ L1(R) and |

∫
fg| ≤ ‖f‖Lp |‖g‖Lq

which can be proved by the same approximation argument as above, see Problem ??.
Thus the series gn is absolutely summable in L1 and so converges absolutely al-
most everywhere. It follows that the series

∑
n
fn(x) converges absolutely almost

everywhere – since it is just
∑
n
gn(x) on [−R,R], to a function, f.

So, we only need show that f ∈ Lp(R) and that
∫
|f − Fn|p → 0 as n → ∞

where Fn =
n∑
k=1

fk. By Minkowski’s inequality we know that hn = (
n∑
k=1

|fk|)p has

bounded L1 norm, since

(2.115) ‖|hn|‖
1
p

L1 = ‖
n∑
k=1

|fk|‖Lp . ≤
∑
k

‖fk‖Lp .

Thus, hn is an increasing sequence of functions in L1(R) with bounded integral,
so by the Monotonicity Lemma it converges a.e. to a function h ∈ L1(R). Since
|Fn|p ≤ h and |Fn|p → |f |p a.e. it follows by Dominated convergence that

(2.116) |f |p ∈ L1(R), ‖|f |p‖
1
p

L1 ≤
∑
n

‖fn‖Lp

and hence f ∈ Lp(R). Applying the same reasoning to f − Fn which is the sum of
the series starting at term n+ 1 gives the norm convergence:

(2.117) ‖f − Fn‖Lp ≤
∑
k>n

‖fk‖Lp → 0 as n→∞.

�

A function f : R −→ C is locally integrable if

(2.118) F[−N,N ] =

{
f(x) x ∈ [−N,N ]

0 x if |x| > N
=⇒ F[−N,N ] ∈ L1(R) ∀ N.

So any continuous function on R is locally integrable as is any element of L1(R).

Lemma 2.12. The locally integrable functions form a linear space, L1
loc(R) and

(2.119)
Lp(R) = {f ∈ L1

loc(R); |f |p ∈ L1(R)} 1 ≤ p <∞
L∞(R) = {f ∈ L1

loc(R); sup
R\E
|f(x)| <∞ for some E of measure zero.}

The proof is left as an exercise.

12. Lebesgue measure

In case anyone is interested in how to define Lebesgue measure from where we
are now we can just use the integral.

Definition 2.10. A set A ⊂ R is measurable if its characteristic function χA is
locally integrable. A measurable set A has finite measure if χA ∈ L1(R) and then

(2.120) µ(A) =

∫
χA
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is the Lebesgue measure of A. If A is measurable but not of finite measure then
µ(A) =∞ by definition.

We know immediately that any interval (a, b) is measurable (indeed whether
open, semi-open or closed) and has finite measure if and only if it is bounded –
then the measure is b− a.

Proposition 2.10. The complement of a measurable set is measurable and any
countable union or countable intersection of measurable sets is measurable.

Proof. The first part follows from the fact that the constant function 1 is
locally integrable and hence χR\A = 1−χA is locally integrable if and only if χA is
locally integrable.

Notice the relationship between a characteristic function and the set it defines:-

(2.121) χA∪B = max(χA, χB), χA∩B = min(χA, χB).

If we have a sequence of sets An then Bn =
⋃
k≤nAk is clearly an increasing

sequence of sets and

(2.122) χBn → χB , B =
∑
n

An

is an increasing sequence which converges pointwise (at each point it jumps to 1
somewhere and then stays or else stays at 0.) Now, if we multiply by χ[−N,N ] then

(2.123) fn = χ[−N,N ]χBn → χB∩[−N,N ]

is an increasing sequence of integrable functions – assuming that is that the Ak’s are
measurable – with integral bounded above, by 2N. Thus by the monotonicity lemma
the limit is integrable so χB is locally integrable and hence

⋃
nAn is measurable.

For countable intersections the argument is similar, with the sequence of char-
acteristic functions decreasing. �

Corollary 2.1. The (Lebesgue) measurable subsets of R form a collection,
M, of the power set of R, including ∅ and R which is closed under complements,
countable unions and countable intersections.

Such a collection of subsets of a set X is called a ‘σ-algebra’ – so a σ-algebra
Σ in a set X is a collection of subsets of X containing X, ∅, the complement of
any element and countable unions and intersections of any element. A (positive)
measure is usually defined as a map µ : Σ −→ [0,∞] with µ(∅) = 0 and such that

(2.124) µ(
⋃
n

En) =
∑
n

µ(En)

for any sequence {Em} of sets in Σ which are disjoint (in pairs).
As for Lebesgue measure a set A ∈ Σ is ‘measurable’ and if µ(A) is not of finite

measure it is said to have infinite measure – for instance R is of infinite measure
in this sense. Since the measure of a set is always non-negative (or undefined if it
isn’t measurable) this does not cause any problems and in fact Lebesgue measure
is countably additive as in (2.124) provided we allow ∞ as a value of the measure.
It is a good exercise to prove this!
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13. Higher dimensions

I have never actually covered this in lectures – there is simply not enough time.
Still it is worth knowing that the Lebesgue integral in higher dimensional Euclidean
spaces can be obtained following the same line of reasoning. So, we want – with
the advantage of a little more experience – to go back to the beginning and define
L1(Rn), L1(Rn), L2(Rn) and L2(Rn). In fact relatively little changes but there are
some things that one needs to check a little carefully.

The first hurdle is that I am not assuming that you have covered the Riemann
integral in higher dimensions; it is in my view a rather pointless thing to do anyway.
Fortunately we do not really need that since we can just iterate the one-dimensional
Riemann integral for continuous functions. So, define

(2.125) Cc(Rn) = {u : Rn −→ C; continuous and such that u(x) = 0 for |x| > R}

where of course the R can depend on the element. Now, if we hold say the last
n − 1 variables fixed, we get a continuous function of one variable which vanishes
when |x| > R :

(2.126) u(·, x2, . . . , xn) ∈ Cc(R) for each (x2, . . . , xn) ∈ Rn−1.

So we can integrate it and get a function

(2.127) I1(x2, . . . , xn) =

∫
R
u(x, x1, . . . , xn), I1 : Rn−1 −→ C.

Lemma 2.13. For each u ∈ Cc(Rn), I1 ∈ Cc(Rn−1).

Proof. Certainly if |(x2, . . . , xn)| > R then u(·, x2, . . . , xn) ≡ 0 as a function of
the first variable and hence I1 = 0 in |(x2, . . . , xn)| > R. The continuity follows from
the uniform continuity of a function on the compact set |x| ≤ R, |(x2, . . . , xn) ≤ R
of Rn. Thus given ε > 0 there exists δ > 0 such that

(2.128) |x− x′| < δ, |y − y′|Rn−1 < δ =⇒ |u(x, y)− u(x′, y′)| < ε.

From the standard estimate for the Riemann integral,

(2.129) |I1(y)− I1(y′)| ≤
∫ R

−R
|u(x, y)− u(x, y′)|dx ≤ 2Rε

if |y − y′| < δ. This implies the (uniform) continuity of I1. Thus I1 ∈ Cc(Rn−2) �

The upshot of this lemma is that we can integrate again, and hence a total of
n times and so define the (iterated) Riemann integral as

(2.130)

∫
Rn
u(z)dz =

∫ R

−R

∫ R

−R
· · ·
∫ R

−R
u(x1, x2, x3, . . . , xn)dx1dx2 . . . dxn ∈ C.

Lemma 2.14. The interated Riemann integral is a well-defined linear map

(2.131) Cc(Rn) −→ C

which satisfies

(2.132) |
∫
u| ≤

∫
|u| ≤ (2R)n sup |u| if u ∈ Cc(Rn) and u(z) = 0 in |z| > R.

Proof. This follows from the standard estimate in one dimension. �
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Now, one slightly annoying thing is that we would really want to know that
the integral is independent of the order of integration. In fact it is not hard – see
Problem XX. Again using properties of the one-dimensional Riemann integral we
find:-

Lemma 2.15. The iterated integral

(2.133) ‖u‖L1 =

∫
Rn
|u|

is a norm on Cc(Rn).

Definition 2.11. The space L1(Rn) is defined to consist of those functions
f : Rn −→ C such that there exists a sequence {fn} which is absolutely summable
with respect to the L1 norm and such that

(2.134)
∑
n

|fn(x)| <∞ =⇒
∑
n

fn(x) = f(x).

Now you can go through the whole discusion above in this higher dimensional
case, and the only changes are really notational!

Things get a littlem more complicated in the discussion of change of variable.
This is covered in the problems. There are also a few other theorems it is good to
know!


