
HOMEWORK 9 FOR 18.100B/C, FALL 2010

WAS DUE THURSDAY 18 NOVEMBER

(1) A function f : [a, b] −→ R is said to be ‘Lipschitz continuous’ (or just
‘Lipschitz’) if there exists a constant A such that

|f(x)− f(y)| ≤ A|x− y| ∀ x, y ∈ [a, b].

Show that if f : [a, b] −→ R is differentiable and f ′ : [a, b] −→ R is bounded
then f is Lipschitz.

Solution. Set A = supx∈(a,b) |f ′(x)| which is finite by hypothesis. By the

Mean Value Theorem, if x < y there exists some c ∈ (x, y) such that
f(y)− f(x) = f ′(c)(y − x). Thus

|f(x)− f(y)| ≤ A|x− y|.

This certainly holds if x = y and follows by symmetry if x > y so always
holds and f is therefore Lipschitz. �

(2) Suppose that g : [0, 1] −→ R is a Lipschitz function and that f : [0, 1] −→
[0, 1] is a differentiable functions satisfying

f ′(x) = g(f(x)) ∀ x ∈ [0, 1].

Show that f ′ : [0, 1] −→ R is Lipschitz.

Solution. Since a differentiable function is continuous, f is continuous on
[0, 1]. Since g, being Lipschitz, is continuous and defined on [0, 1] it follows
from a theorem in Rudin that the composite, g ◦ f, is continuous on [0, 1]
and hence is bounded. Thus, from the differential equation, |f ′| ≤ M is
also bounded and hence, using the preceding problem, f is Lipschitz. So,
we need to show that the composte f ′ = g ◦f is also Lipschitz. This follows
by applying the two Lipschitz inequalities:-

|g ◦ f(x)− g ◦ f(y)| = |g(f(x))− g(f(y))| ≤ A|f(x)− f(y)| ≤ AM |x− y|

where A is the Lipschitz constant for g. �

(3) Rudin Chap 7, No 1. Prove that every uniformly convergent sequence of
bounded functions is uniformly bounded.

Solution. If fn is a uniformly convergent sequence of functions on a set E
then, applying the definition of uniform convergence, there exists N such
that if n ≥ N,

|fn(e)− fN (e)| ≤ 1 =⇒ |fn(e)| ≤ 1 + sup
E
|fN |.

Thus the boundedness of f1, . . . , fN implies the uniform boundedness of
all the functions in the sequence. �
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(4) Rudin Chap 7, No 2. If {fn} and {gn} are sequences of functions defined on
a set E and each converges uniformly on E prove that {fn + gn} converges
uniformly on E. If in addition both sequences consist of bounded functions,
prove that fngn converges uniformly on E.

Solution. Directly from the definition of uniform convergence, given ε > 0
there exist N1 and N2 such that n > N1 implies |fn(e) − f(e)| < ε/2 and
n > N2 implies |gn(e)−g(e)| < ε/2 where f and g are the limiting functions.
Thus if n > N1 +N2 then |(fn + gn)(e)− (f + g)(e)| < ε so the sum gives
a uniformly convergent sequence.

For the product we assume that both fn and gn are bounded, so by the
preceding result, both sequences are uniformly bounded. If M is an upper
bound for all |fn| and gn| it follows that

|fngn(e)− fg(e)| ≤ |fn(e)− f(e)|gn(e)|+ |f(e)||gn(e)− g(e)| < Mε

whenever n > N1 +N2. Thus fngn → fg uniformly on E. �

(5) Rudin Chap 7, No 6. Prove that the series of functions
∞∑

n=1

(−1)n
x2 + n

n2

on the real line converges uniformly on any bounded subset of the reals but
does not converge absolutely for any value of x.

Solution. The series
∑
n

(−1)n
n and

∑
n

1
n2 are both convergent, with the first

not being absolutely convergent. Now
m∑

n=1

(−1)n
x2 + n

n2
= x2

m∑
n=1

(−1)n

n2
+

m∑
n=1

(−1)n

n2
.

So, for x in any bounded subset of R, the first series on the right is uniformly
and absolutely Cauchy hence uniformly and absolutely convergent. The
second series is convergent but not absolutely convergent. So the given
series is uniformly convergent on any bounded set but cannot be absolutely
convergent for any single value of x since this would imply the absolute

convergence of
∞∑

n=1
(−1)n/n. �


