HOMEWORK 8 FOR 18.100B/C, FALL 2010 DUE FRIDAY 12 NOVEMBER

Since Thursday November 11 is a holiday, homework is due in 2-108 by 11AM on Friday 12 November, or by email before 5PM on the same day.
(1) Rudin Chap 6 No 2. Suppose $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and nonnegative, $f(x) \geq 0$ for all $x \in[a, b]$. Show that if $\int_{a}^{b} f(x) d x=0$ then $f(x)=0$ for all $x \in[a, b]$.
(2) Rudin Chap 6 No 4. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f(x)=0$ when x is irrational and $f(x)=1$ when x is rational. Show that $f \notin \mathcal{R}$ (the space of Riemann integrable functions) on any interval $[a, b]$ where $a<b$.
(3) Rudin Chap 6 No 5. Suppose $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and that $f^{2} \in \mathcal{R}$ does it follow that $f \in \mathcal{R}$? What if $f^{3} \in \mathcal{R}$?
(4) Rudin Chap 6 No 8 . Suppose that $f:[1, \infty) \longrightarrow \mathbb{R}$ is non-negative and monotonic decreasing. Show that $\lim _{b \rightarrow \infty} \int_{1}^{b} f(x) d x$ exists (and is finite) if and only if $\sum_{n=1}^{\infty} f(n)$ exists (and is finite).
(5) Suppose that $\alpha:[a, b] \longrightarrow \mathbb{R}$ is monotonic increasing and $f \in \mathcal{R}(\alpha)$ is realvalued and Riemann-Stieltjes integrable on $[a, b]$. Show that for every $\epsilon>0$ there is a continuous function $g:[a, b] \longrightarrow \mathbb{R}$ such that $\int_{a}^{b}|f-g| d \alpha<\epsilon$. For a hint, see Rudin Chap 6 No 12.

