HOMEWORK 8 FOR 18.100B/C, FALL 2010 DUE FRIDAY 12 NOVEMBER

Since Thursday November 11 is a holiday, homework is due in 2-108 by 11AM on Friday 12 November, or by email before 5PM on the same day.

- (1) Rudin Chap 6 No 2. Suppose $f : [a,b] \longrightarrow \mathbb{R}$ is continuous and non-negative, $f(x) \ge 0$ for all $x \in [a,b]$. Show that if $\int_a^b f(x) dx = 0$ then f(x) = 0 for all $x \in [a,b]$.
- (2) Rudin Chap 6 No 4. Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ is defined by f(x) = 0 when x is irrational and f(x) = 1 when x is rational. Show that $f \notin \mathcal{R}$ (the space of Riemann integrable functions) on any interval [a, b] where a < b.
- (3) Rudin Chap 6 No 5. Suppose $f : [a, b] \longrightarrow \mathbb{R}$ is bounded and that $f^2 \in \mathcal{R}$ does it follow that $f \in \mathcal{R}$? What if $f^3 \in \mathcal{R}$?
- (4) Rudin Chap 6 No 8. Suppose that f : [1,∞) → R is non-negative and monotonic decreasing. Show that lim_{b→∞} ∫₁^b f(x)dx exists (and is finite) if and only if ∑_{n=1}[∞] f(n) exists (and is finite).
- (5) Suppose that $\alpha : [a, b] \longrightarrow \mathbb{R}$ is monotonic increasing and $f \in \mathcal{R}(\alpha)$ is realvalued and Riemann-Stieltjes integrable on [a, b]. Show that for every $\epsilon > 0$ there is a continuous function $g : [a, b] \longrightarrow \mathbb{R}$ such that $\int_a^b |f - g| d\alpha < \epsilon$. For a hint, see Rudin Chap 6 No 12.