SOLUTIONS TO HOMEWORK 8 FOR 18.100B/C, FALL 2010 WAS DUE FRIDAY 12 NOVEMBER

(1) Rudin Chap 6 No 2. Suppose $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and nonnegative, $f(x) \geq 0$ for all $x \in[a, b]$. Show that if $\int_{a}^{b} f(x) d x=0$ then $f(x)=0$ for all $x \in[a, b]$.

Solution. If f is not identically zero then there exists $c \in[a, b]$ such that $|f(c)|>0$. Since f is assumed to be continuous, there exists $\delta>0$ such that $|x-c| \leq \delta$ implies $|f(x)-f(c)|<|f(c)| / 2$ and hence that $|f(x)|>|f(c)| / 2$. Since the length of this interval is at least δ (it might be close to one of the ends) it follows that

$$
\int_{a}^{b}|f(x)| d x \geq \frac{1}{2}|f(c)| \delta>0 .
$$

Thus, if $\int_{s}^{b}|f(x)| d x=0$ and f is continuous it follows that $f \equiv 0$ on $[a, b]$.
(2) Rudin Chap 6 No 4. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f(x)=0$ when x is irrational and $f(x)=1$ when x is rational. Show that $f \notin \mathcal{R}$ (the space of Riemann integrable functions) on any interval $[a, b]$ where $a<b$.

Solution. Since both the rationals and the irrationals are dense it follows that for any interval $\left[x_{n-1}, x_{n}\right]$, with $x_{n}>x_{n-1}, \inf f=0$ and $\sup f=1$. Thus for any partition of an interval of non-zero length, l, where we can always drop the segments of zero length, $L(\mathcal{P}, f)=0, U(\mathcal{P}, f)=l$. Thus these are equal to the lower and upper integrals, which are therefore not equal, so f is not Riemann integrable on any non-empty interval.

Note that this is an example of a function which is Lebesgue by not Riemann integrable, not that we can prove this very easily, but only because we have not defined Lebesgue integrability.
(3) Rudin Chap 6 No 5 . Suppose $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and that $f^{2} \in \mathcal{R}$ does it follow that $f \in \mathcal{R}$? What if $f^{3} \in \mathcal{R}$?

Solution. In general it does not follow from the Riemann integrability of f^{2} that a bounded function is Riemann integrable. An example is given by $g=f-\frac{1}{2}$ where f is the function in the preceding problem. Then $g(x)= \pm \frac{1}{2}$ as x is irrational or rational so g^{2} is constant, hence Riemann integrable, but g is not - since if it was it would follows that f was also Riemann integrable.
(4) Rudin Chap 6 No 8 . Suppose that $f:[1, \infty) \longrightarrow \mathbb{R}$ is non-negative and monotonic decreasing. Show that $\lim _{b \rightarrow \infty} \int_{1}^{b} f(x) d x$ exists (and is finite) if and only if $\sum_{n=1}^{\infty} f(n)$ exists (and is finite).

Solution. If f is non-negative and monotonic decreasing then, by a theorem in Rudin, it is integrable on any finite interval. Thus $F(b)=\int_{1}^{b} f(x) d x$ does exist for $b \geq 1$. Moreover, since f is non-negative, it is an increasing function of $b, F\left(b^{\prime}\right)-F(b)=\int_{b}^{b^{\prime}} f d x \geq 0$ for $b^{\prime}>b$. Thus the limit exists if and only if F is bounded above. Since f is monotonic decreasing, it follows that $x \in[n, n+1]$ implies $f(n) \geq f(x) \geq f(n+1)$. Thus,

$$
\begin{aligned}
F(x) & =\sum_{i=1}^{n-1} \int_{i}^{i+1}+\int_{n}^{x}>\sum_{i=1}^{n-1} \\
& \Longrightarrow F(x) g e \sum_{i=1}^{n-1} f(i)
\end{aligned}
$$

$$
\text { and } f(x) \leq \sum_{i=1}^{n-1} f(i+1) \cdot F(x)
$$

It follows that the sequence of partial sums of the series $\sum_{n=1}^{\infty} f(n)$ is bounded if and only if F is bounded, hence the limits either both exist or both are infinite.
(5) Suppose that $\alpha:[a, b] \longrightarrow \mathbb{R}$ is monotonic increasing and $f \in \mathcal{R}(\alpha)$ is realvalued and Riemann-Stieltjes integrable on $[a, b]$. Show that for every $\epsilon>0$ there is a continuous function $g:[a, b] \longrightarrow \mathbb{R}$ such that $\int_{a}^{b}|f-g| d \alpha<\epsilon$. For a hint, see Rudin Chap 6 No 12.
Solution. If \mathcal{P} is a partition of $[a, b]$ the function associated by Rudin to the partition and f is defined by

$$
g(x)=\frac{x_{i}-t}{\Delta x_{i}} f\left(x_{i-1}\right)+\frac{t-x_{i-1}}{\Delta x_{i}} f\left(x_{i}\right)
$$

on $\left[x_{i-1}, x_{i}\right]$ is linear on each segment and takes the value $f\left(x_{i-1}\right)$ at $t=$ x_{i-1} and $f\left(x_{i}\right)$ at $t=x_{i}$. It is in fact given by 'linear interpolation' between these two values. It follows that g is continuous, since it is continuous on each open interval and the limits from above and below at the ends exist and are equal.

On the other hand, given $\epsilon>0$ we may choose \mathcal{P} so that

$$
U(\mathcal{P}, f, \alpha)-L(\mathcal{P}, f, \alpha)<\epsilon
$$

by the assumed integrability of f. For $x \in\left[x_{i-1}, x_{i}\right] f(x)-g(x) \leq M_{i} f-m_{i} f$ and similarly $g(x)-f(x) \leq M_{i}-m_{i}$ where $M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} f, m_{i}=$ $\inf _{\left[x_{i-1}, x_{i}\right]} f$, so $|f(x)-g(x)| \leq M_{i}-m_{i}$ and it follows that

$$
\begin{equation*}
0 \leq U(\mathcal{P},|f-g|, \alpha)<\epsilon \tag{1}
\end{equation*}
$$

It follows that $\int_{a}^{b}|f-g| d \alpha<\epsilon$. Thus for any $\epsilon>0$ there is always a continuous function g (depending of course on ϵ in general) such that $\int_{a}^{b} \mid f-$ $g \mid d \alpha<\epsilon$.

