SOLUTIONS TO HOMEWORK 8 FOR 18.100B/C, FALL 2010 WAS DUE FRIDAY 12 NOVEMBER

(1) Rudin Chap 6 No 2. Suppose $f : [a,b] \longrightarrow \mathbb{R}$ is continuous and non-negative, $f(x) \ge 0$ for all $x \in [a,b]$. Show that if $\int_a^b f(x)dx = 0$ then f(x) = 0 for all $x \in [a,b]$.

Solution. If f is not identically zero then there exists $c \in [a, b]$ such that |f(c)| > 0. Since f is assumed to be continuous, there exists $\delta > 0$ such that $|x-c| \leq \delta$ implies |f(x) - f(c)| < |f(c)|/2 and hence that |f(x)| > |f(c)|/2. Since the length of this interval is at least δ (it might be close to one of the ends) it follows that

$$\int_{a}^{b} |f(x)| dx \ge \frac{1}{2} |f(c)| \delta > 0.$$

Thus, if $\int_{s}^{b} |f(x)| dx = 0$ and f is continuous it follows that $f \equiv 0$ on [a, b].

(2) Rudin Chap 6 No 4. Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ is defined by f(x) = 0 when x is irrational and f(x) = 1 when x is rational. Show that $f \notin \mathcal{R}$ (the space of Riemann integrable functions) on any interval [a, b] where a < b.

Solution. Since both the rationals and the irrationals are dense it follows that for any interval $[x_{n-1}, x_n]$, with $x_n > x_{n-1}$, inf f = 0 and $\sup f = 1$. Thus for any partition of an interval of non-zero length, l, where we can always drop the segments of zero length, $L(\mathcal{P}, f) = 0$, $U(\mathcal{P}, f) = l$. Thus these are equal to the lower and upper integrals, which are therefore not equal, so f is not Riemann integrable on any non-empty interval.

Note that this is an example of a function which is Lebesgue by not Riemann integrable, not that we can prove this very easily, but only because we have not defined Lebesgue integrability.

(3) Rudin Chap 6 No 5. Suppose $f: [a, b] \longrightarrow \mathbb{R}$ is bounded and that $f^2 \in \mathcal{R}$ does it follow that $f \in \mathcal{R}$? What if $f^3 \in \mathcal{R}$?

Solution. In general it does not follow from the Riemann integrability of f^2 that a bounded function is Riemann integrable. An example is given by $g = f - \frac{1}{2}$ where f is the function in the preceding problem. Then $g(x) = \pm \frac{1}{2}$ as x is irrational or rational so g^2 is constant, hence Riemann integrable, but g is not – since if it was it would follows that f was also Riemann integrable.

(4) Rudin Chap 6 No 8. Suppose that $f : [1, \infty) \longrightarrow \mathbb{R}$ is non-negative and monotonic decreasing. Show that $\lim_{b\to\infty} \int_1^b f(x) dx$ exists (and is finite) if and only if $\sum_{n=1}^{\infty} f(n)$ exists (and is finite).

Solution. If f is non-negative and monotonic decreasing then, by a theorem in Rudin, it is integrable on any finite interval. Thus $F(b) = \int_1^b f(x) dx$ does exist for $b \ge 1$. Moreover, since f is non-negative, it is an increasing function of b, $F(b') - F(b) = \int_b^{b'} f dx \ge 0$ for b' > b. Thus the limit exists if and only if F is bounded above. Since f is monotonic decreasing, it follows that $x \in [n, n+1]$ implies $f(n) \ge f(x) \ge f(n+1)$. Thus,

$$F(x) = \sum_{i=1}^{n-1} \int_{i}^{i+1} + \int_{n}^{x} > \sum_{i=1}^{n-1}$$

$$\implies F(x)ge\sum_{i=1}^{n-1} f(i)$$

and $f(x) \le \sum_{i=1}^{n-1} f(i+1).F(x)$

It follows that the sequence of partial sums of the series $\sum_{n=1}^{\infty} f(n)$ is bounded if and only if F is bounded, hence the limits either both exist or both are infinite.

(5) Suppose that $\alpha : [a, b] \longrightarrow \mathbb{R}$ is monotonic increasing and $f \in \mathcal{R}(\alpha)$ is realvalued and Riemann-Stieltjes integrable on [a, b]. Show that for every $\epsilon > 0$ there is a continuous function $g : [a, b] \longrightarrow \mathbb{R}$ such that $\int_a^b |f - g| d\alpha < \epsilon$. For a hint, see Rudin Chap 6 No 12.

Solution. If \mathcal{P} is a partition of [a, b] the function associated by Rudin to the partition and f is defined by

$$g(x) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$$

on $[x_{i-1}, x_i]$ is linear on each segment and takes the value $f(x_{i-1})$ at $t = x_{i-1}$ and $f(x_i)$ at $t = x_i$. It is in fact given by 'linear interpolation' between these two values. It follows that g is continuous, since it is continuous on each open interval and the limits from above and below at the ends exist and are equal.

On the other hand, given $\epsilon > 0$ we may choose \mathcal{P} so that

 $U(\mathcal{P}, f, \alpha) - L(\mathcal{P}, f, \alpha) < \epsilon$

by the assumed integrability of f. For $x \in [x_{i-1}, x_i] f(x) - g(x) \leq M_i f - m_i f$ and similarly $g(x) - f(x) \leq M_i - m_i$ where $M_i = \sup_{[x_{i-1}, x_i]} f$, $m_i = \inf_{[x_{i-1}, x_i]} f$, so $|f(x) - g(x)| \leq M_i - m_i$ and it follows that

(1)
$$0 \le U(\mathcal{P}, |f - g|, \alpha) < \epsilon.$$

It follows that $\int_a^b |f - g| d\alpha < \epsilon$. Thus for any $\epsilon > 0$ there is always a continuous function g (depending of course on ϵ in general) such that $\int_a^b |f - g| d\alpha < \epsilon$.