
SOLUTIONS TO HOMEWORK 8 FOR 18.100B/C, FALL 2010

WAS DUE FRIDAY 12 NOVEMBER

(1) Rudin Chap 6 No 2. Suppose f : [a, b] −→ R is continuous and non-

negative, f(x) ≥ 0 for all x ∈ [a, b]. Show that if
∫ b

a
f(x)dx = 0 then

f(x) = 0 for all x ∈ [a, b].

Solution. If f is not identically zero then there exists c ∈ [a, b] such that
|f(c)| > 0. Since f is assumed to be continuous, there exists δ > 0 such that
|x−c| ≤ δ implies |f(x)−f(c)| < |f(c)|/2 and hence that |f(x)| > |f(c)|/2.
Since the length of this interval is at least δ (it might be close to one of the
ends) it follows that∫ b

a

|f(x)|dx ≥ 1

2
|f(c)|δ > 0.

Thus, if
∫ b

s
|f(x)|dx = 0 and f is continuous it follows that f ≡ 0 on

[a, b]. �

(2) Rudin Chap 6 No 4. Suppose f : R −→ R is defined by f(x) = 0 when x is
irrational and f(x) = 1 when x is rational. Show that f /∈ R (the space of
Riemann integrable functions) on any interval [a, b] where a < b.

Solution. Since both the rationals and the irrationals are dense it follows
that for any interval [xn−1, xn], with xn > xn−1, inf f = 0 and sup f = 1.
Thus for any partition of an interval of non-zero length, l, where we can
always drop the segments of zero length, L(P, f) = 0, U(P, f) = l. Thus
these are equal to the lower and upper integrals, which are therefore not
equal, so f is not Riemann integrable on any non-empty interval. �

Note that this is an example of a function which is Lebesgue by not
Riemann integrable, not that we can prove this very easily, but only because
we have not defined Lebesgue integrability.

(3) Rudin Chap 6 No 5. Suppose f : [a, b] −→ R is bounded and that f2 ∈ R
does it follow that f ∈ R? What if f3 ∈ R?

Solution. In general it does not follow from the Riemann integrability of
f2 that a bounded function is Riemann integrable. An example is given
by g = f − 1

2 where f is the function in the preceding problem. Then

g(x) = ± 1
2 as x is irrational or rational so g2 is constant, hence Riemann

integrable, but g is not – since if it was it would follows that f was also
Riemann integrable. �

(4) Rudin Chap 6 No 8. Suppose that f : [1,∞) −→ R is non-negative and

monotonic decreasing. Show that limb→∞
∫ b

1
f(x)dx exists (and is finite) if

and only if
∞∑

n=1
f(n) exists (and is finite).
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Solution. If f is non-negative and monotonic decreasing then, by a theorem

in Rudin, it is integrable on any finite interval. Thus F (b) =
∫ b

1
f(x)dx does

exist for b ≥ 1. Moreover, since f is non-negative, it is an increasing function

of b, F (b′) − F (b) =
∫ b′

b
fdx ≥ 0 for b′ > b. Thus the limit exists if and

only if F is bounded above. Since f is monotonic decreasing, it follows that
x ∈ [n, n+ 1] implies f(n) ≥ f(x) ≥ f(n+ 1). Thus,

F (x) =

n−1∑
i=1

∫ i+1

i

+

∫ x

n

>

n−1∑
i=1

=⇒ F (x)ge

n−1∑
i=1

f(i)

and f(x) ≤
n−1∑
i=1

f(i+ 1).F (x)

It follows that the sequence of partial sums of the series
∞∑

n=1
f(n) is bounded

if and only if F is bounded, hence the limits either both exist or both are
infinite. �

(5) Suppose that α : [a, b] −→ R is monotonic increasing and f ∈ R(α) is real-
valued and Riemann-Stieltjes integrable on [a, b]. Show that for every ε > 0

there is a continuous function g : [a, b] −→ R such that
∫ b

a
|f − g|dα < ε.

For a hint, see Rudin Chap 6 No 12.

Solution. If P is a partition of [a, b] the function associated by Rudin to
the partition and f is defined by

g(x) =
xi − t
∆xi

f(xi−1) +
t− xi−1

∆xi
f(xi)

on [xi−1, xi] is linear on each segment and takes the value f(xi−1) at t =
xi−1 and f(xi) at t = xi. It is in fact given by ‘linear interpolation’ between
these two values. It follows that g is continuous, since it is continuous on
each open interval and the limits from above and below at the ends exist
and are equal.

On the other hand, given ε > 0 we may choose P so that

U(P, f, α)− L(P, f, α) < ε

by the assumed integrability of f. For x ∈ [xi−1, xi] f(x)−g(x) ≤Mif−mif
and similarly g(x) − f(x) ≤ Mi − mi where Mi = sup[xi−1,xi] f, mi =

inf [xi−1,xi] f, so |f(x)− g(x)| ≤Mi −mi and it follows that

(1) 0 ≤ U(P, |f − g|, α) < ε.

It follows that
∫ b

a
|f − g|dα < ε. Thus for any ε > 0 there is always a

continuous function g (depending of course on ε in general) such that
∫ b

a
|f−

g|dα < ε. �


