HOMEWORK 7 FOR 18.100B/C, FALL 2010

DUE THURSDAY 4 NOVEMBER

As usual due in 2-108 or lecture by 11AM or by email before 5 PM .
(1) Let $K_{1}, K_{2} \subset M$ be two compact subsets of a metric space (M, d). Show that there exist points $p \in K_{1}$ and $q \in K_{2}$ such that

$$
d(p, q)=\sup _{y \in K_{2}} \inf _{x \in K_{1}} d(x, y)
$$

Define

$$
D\left(K_{1}, K_{2}\right)=\max \left(\sup _{y \in K_{2}} \inf _{x \in K_{1}} d(x, y), \sup _{x \in K_{1}} \inf _{y \in K_{2}} d(x, y)\right)
$$

Show that D defines a metric on the collection of (non-empty) compact subsets of M.
(2) If $f:[a, b] \longrightarrow \mathbb{R}$ is differentiable (where $a<b$) and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ show that $f(b) \neq f(a)$.
(3) Rudin Chap 5 No 4 . If C_{i} for $0 \leq i \leq n$ are real constants such that

$$
C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

show that the equation

$$
C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}=0
$$

has at least one real solution x in the interval $(0,1)$.
(4) Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable and that $f^{\prime}(x) \neq 1$ for all $x \in \mathbb{R}$ show that there can be at most one $x \in \mathbb{R}$ such that $f(x)=x$ ('a fixed point of f^{\prime}).
(5) Rudin Chap 5 No 15 . Suppose $a \in \mathbb{R}, f$ is a twice-differentiable real function on (a, ∞) and M_{0}, M_{1} and M_{2} are the suprema of $|f(x)|,\left|f^{\prime}(x)\right|$ and $\left|f^{\prime \prime}(x)\right|$ on (a, ∞) (so all are assumed to be finite). Prove that

$$
M_{1}^{2} \leq 4 M_{0} M_{2}
$$

[There is a hint in Rudin, namely Taylor's theorem shows that given any $h>0$ and $x \in(a, \infty)$ there is $\xi \in(x, x+2 h)$ such that

$$
f^{\prime}(x)=\frac{1}{2 h}(f(x+2 h)-f(x))-h f^{\prime \prime}(\xi) .
$$

Use this to show that $\left|f^{\prime}(x)\right| \leq h M_{2}+\frac{M_{0}}{h}$. For what value of h is the RHS smallest?]

