HOMEWORK 7 FOR 18.100B/C, FALL 2010 DUE THURSDAY 4 NOVEMBER

As usual due in 2-108 or lecture by 11AM or by email before 5 PM .
(1) Let $K_{1}, K_{2} \subset M$ be two compact subsets of a metric space (M, d). Show that there exist points $p \in K_{1}$ and $q \in K_{2}$ such that

$$
d(p, q)=\sup _{y \in K_{2}} \inf _{x \in K_{1}} d(x, y)
$$

Define

$$
D\left(K_{1}, K_{2}\right)=\max \left(\sup _{y \in K_{2}} \inf _{x \in K_{1}} d(x, y), \sup _{x \in K_{1}} \inf _{y \in K_{2}} d(x, y)\right)
$$

Show that D defines a metric on the collection of (non-empty) compact subsets of M.

Solution(s): For each $y \in K_{2}$ we know that there exists a point $x^{\prime} \in K_{1}$ such that $d\left(y, x^{\prime}\right)=\inf _{x \in K_{1}} d(x, y)$. This was in an earlier homework, using sequences, and we now know that it follows from the fact that $d(y, \cdot)$ is a continuous function of the second variable and hence attains its infimum on any compact set. Now, from the definition of $L=\sup _{y \in K_{2}} \inf _{x \in K_{1}} d(x, y)$ there must exist a sequence of pairs $\left(y_{n}, x_{n}^{\prime}\right) \in K_{2} \times K_{1}$ such that $d\left(y_{n}, x_{n}^{\prime}\right) \rightarrow L$. Since K_{1} and K_{2} are compact we can pass to subsequences, first so that $x_{n}^{\prime} \rightarrow q$ and then so that $y_{n} \rightarrow p$ and it follows that $d(p, q)=L$ since

$$
\begin{aligned}
\left|L-d\left(y^{\prime}, x^{\prime}\right)\right| \leq & \left|L-d\left(y_{n}, x_{n}^{\prime}\right)\right|+\left|d\left(y_{n}, x^{\prime}\right)-d\left(y_{n}, x_{n}^{\prime}\right)+\left|d\left(y_{n}, x^{\prime}\right)-d\left(y^{\prime}, x^{\prime}\right)\right|\right. \\
& \leq\left|L-d\left(y_{n}, x_{n}^{\prime}\right)\right|+d\left(x^{\prime}, x_{n}^{\prime}\right)+\left|d\left(y_{n}, y^{\prime}\right)\right| \rightarrow 0 .
\end{aligned}
$$

Of course, $p \in K_{2}$ and $q \in K_{1}$ since these sets are closed, hence compact.
Perhaps a better way to see this first part is to see check that the function $f(y)=\inf _{x \in K_{1}} d(x, y)$ defined on K_{2} is continuous, hence it attains its supremum and this gives a pair (p, q). Continuity follows from the fact that, for fixed $y^{\prime} \in K_{2}$ if $y \in B\left(y^{\prime}, \epsilon\right) \cap K_{2}$ then $\left|d(x, y)-d\left(x, y^{\prime}\right)\right|<\epsilon$. Thus the infimum, $f(y)<f\left(y^{\prime}\right)+\epsilon$ since there exists $x^{\prime} \in K_{1}$ such that $d\left(x^{\prime}, y^{\prime}\right)=f\left(y^{\prime}\right)$ and hence $d(x, y)<f\left(y^{\prime}\right)+\epsilon$. Moreover, $y^{\prime} \in B(y, \epsilon)$ and there exists $x \in K_{1}$ such that $d(x, y)=f(y), f\left(y^{\prime}\right)<f(y)+\epsilon$. Thus $\left|f(y)-f\left(y^{\prime}\right)\right|<\epsilon$ and f is continuous.

Now, to see that D as defined is a metric, first note that it is non-negative and by definition symmetric, $D\left(K_{1}, K_{2}\right)=D\left(K_{2}, K_{1}\right)$. Since the infimum is always zero, $D(K, K)=0$. To see that $D\left(K_{1}, K_{2}\right) \neq 0$ when $K_{1} \neq K_{2}$ are both non-empty observe that, after exchanging the labels if necessary, there is a point $y \in K_{2} \backslash K_{1}$. Then $\inf _{x \in K_{1}} d(x, y)>0$ since it is realized at a point $x \in K_{1}$ and necessarily $x \neq y$, so $D\left(K_{1}, K_{2}\right)>0$.

So, only the triangle inequality remains. Let me do this somewhat geometrically. Consider an arbitrary point $p \in K_{1}$ and select $x \in K_{2}$ such that $d(p, x)=\inf _{x^{\prime} \in K_{2}} d\left(p, x^{\prime}\right)$. Having chosen this point, choose $y \in K_{3}$ such
that $d(x, y)=\inf _{y^{\prime} \in K_{3}} d\left(x, y^{\prime}\right)$. The triangle inequality gives

$$
d(p, y) \leq d(p, x)+d(x, y) \leq D\left(K_{1}, K_{2}\right)+D\left(K_{2}, K_{3}\right)
$$

since both terms on the right are infimums. Now, since $y \in K_{3}$,

$$
\inf _{z \in K_{3}} d(p, x) \leq d(p, y) \leq D\left(K_{1}, K_{2}\right)+D\left(K_{2}, K_{3}\right)
$$

Taking the supremum over $p \in K_{1}$ then gives

$$
\sup _{p \in K_{1}} \inf _{z \in K_{3}} d(p, x) \leq D\left(K_{1}, K_{2}\right)+D\left(K_{2}, K_{3}\right) .
$$

Reversing the roles of K_{3} and K_{1} then shows that

$$
D\left(K_{1}, K_{3}\right) \leq D\left(K_{1}, K_{2}\right)+D\left(K_{2}, K_{3}\right)
$$

One does not need to go through the 'geometrical picture' if you are confident (competent?) with your infs and sups. Take the triangle inequality for an arbitrary triple, $p_{i} \in K_{i}$:

$$
d\left(p_{1}, p_{3}\right) \leq d\left(p_{1}, p_{2}\right)+d\left(p_{2}, p_{3}\right) .
$$

Now take the infimum of both sides over $p_{3} \in K_{3}$ and use the definition of D to see that
$\inf _{p_{3} \in K_{3}} d\left(p_{1}, p_{3}\right) \leq d\left(p_{1}, p_{2}\right)+\inf _{p_{3} \in K_{3}} d\left(p_{2}, p_{3}\right) \leq d\left(p_{1}, p_{2}\right)+D\left(K_{2}, K_{3}\right)$.
Now we may take the infimum over $p_{2} \in K_{2}$ since it only appears on the right to get

$$
\inf _{p_{3} \in K_{3}} d\left(p_{1}, p_{3}\right) \leq \inf _{p_{2} \in K_{2}} d\left(p_{1}, p_{2}\right)+D\left(K_{2}, K_{3}\right) \leq D\left(K_{1}, K_{2}\right)+D\left(K_{2}, K_{3}\right)
$$

and then proceed as before - take the sup over p_{1}.
(2) If $f:[a, b] \longrightarrow \mathbb{R}$ is differentiable (where $a<b$) and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ show that $f(b) \neq f(a)$.

Solution. Since f is differentiable on $[a, b]$ it is continuous on $[a, b]$ by a Theorem in Rudin. The mean value theorem then shows that there exists $x \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(x)(b-a)$. Thus if $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then $f(b) \neq f(a)$.
(3) Rudin Chap 5 No 4. If C_{i} for $0 \leq i \leq n$ are real constants such that

$$
C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

show that the equation

$$
C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}=0
$$

has at least one real solution x in the interval $(0,1)$.
Solution. The crucial obsevation is that if

$$
\begin{gathered}
p(x)=C_{0} x+C_{1} \frac{x^{2}}{2}+C_{2} \frac{x^{3}}{3}+\cdots+C_{n} \frac{x^{n+1}}{n+1} \text { then } \\
p^{\prime}(x)=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n} .
\end{gathered}
$$

Certainly $p(0)=0$ and by assumption, $p(1)=0$. As a polynomial, p : $[0,1] \longrightarrow \mathbb{R}$ is (infinitely) differential, so by the mean value theorem there is a point $x \in(0,1)$ such that

$$
0=p(1)-p(0)=p^{\prime}(x)(1-0)=p^{\prime}(x)
$$

as desired.
(4) Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable and that $f^{\prime}(x) \neq 1$ for all $x \in \mathbb{R}$ show that there can be at most one $x \in \mathbb{R}$ such that $f(x)=x$ ('a fixed point of $\left.f^{\prime}\right)$.

Solution. Suppose there were two distinct points $x_{1}<x_{2}$ with $f\left(x_{1}\right)=$ x_{1} and $f\left(x_{2}\right)=x_{2}$. Since f is differentiable on the real line, the function $g(x)=f(x)-x$ is continuous on $\left[x_{1}, x_{2}\right]$ and differentiable so by the mean value theorem there exists $x \in\left(x_{1}, x_{2}\right)$ such that $0=g\left(x_{2}\right)-g\left(x_{1}\right)=$ $g^{\prime}(x)\left(x_{2}-x_{1}\right)=\left(f^{\prime}(x)-1\right)\left(x_{2}-x_{1}\right)$. By assumption, $f^{\prime}(x) \neq 1$, so this is a contradiction and there can be at most one fixed point of f.
(5) Rudin Chap 5 No 15 . Suppose $a \in \mathbb{R}, f$ is a twice-differentiable real function on (a, ∞) and M_{0}, M_{1} and M_{2} are the suprema of $|f(x)|,\left|f^{\prime}(x)\right|$ and $\left|f^{\prime \prime}(x)\right|$ on (a, ∞) (so all are assumed to be finite). Prove that

$$
M_{1}^{2} \leq 4 M_{0} M_{2}
$$

[There is a hint in Rudin, namely Taylor's theorem shows that given any $h>0$ and $x \in(a, \infty)$ there is $\xi \in(x, x+2 h)$ such that

$$
f^{\prime}(x)=\frac{1}{2 h}(f(x+2 h)-f(x))-h f^{\prime \prime}(\xi)
$$

Use this to show that $\left|f^{\prime}(x)\right| \leq h M_{2}+\frac{M_{0}}{h}$. For what value of h is the RHS smallest?]

Solution. As Rudin suggests, using the twice-differentiability of f, which means that f^{\prime} is differentiable, apply Taylor's theorem with remainder term to see that for any $h>0$ there exists $\xi \in(x, x+2 h)$ such that
$f(x+2 h)=f(x)+2 h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(\xi) \Longrightarrow f^{\prime}(x)=\frac{1}{2 h}(f(x+2 h)-f(x))-h f^{\prime \prime}(\xi)$.
Now use the definitions of M_{0} and M_{2} to see that

$$
\left|f^{\prime}(x)\right| \leq=\frac{M_{0}}{h}+h M_{2} \forall h>0
$$

If $M_{2}=0$ then letting $h \rightarrow \infty$ shows that $f^{\prime}(x)=0$ and similarly if $M_{0}=0$ then letting $h \rightarrow 0$ leads to the same conclusion. So we may set $h=M_{0}^{\frac{1}{2}} M_{2}^{-\frac{1}{2}}$ and deduce that

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq 2\left(M_{0} M_{2}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

Taking the supremum over $x \in(a, \infty)$ and squaring gives the desired estimate.

