
HOMEWORK 7 FOR 18.100B/C, FALL 2010

DUE THURSDAY 4 NOVEMBER

As usual due in 2-108 or lecture by 11AM or by email before 5PM.

(1) Let K1, K2 ⊂ M be two compact subsets of a metric space (M,d). Show
that there exist points p ∈ K1 and q ∈ K2 such that

d(p, q) = sup
y∈K2

inf
x∈K1

d(x, y).

Define

D(K1,K2) = max

(
sup
y∈K2

inf
x∈K1

d(x, y), sup
x∈K1

inf
y∈K2

d(x, y)

)
.

Show that D defines a metric on the collection of (non-empty) compact
subsets of M.

Solution(s): For each y ∈ K2 we know that there exists a point x′ ∈ K1

such that d(y, x′) = infx∈K1
d(x, y). This was in an earlier homework, using

sequences, and we now know that it follows from the fact that d(y, ·) is a con-
tinuous function of the second variable and hence attains its infimum on any
compact set. Now, from the definition of L = supy∈K2

infx∈K1
d(x, y) there

must exist a sequence of pairs (yn, x
′
n) ∈ K2×K1 such that d(yn, x

′
n)→ L.

Since K1 and K2 are compact we can pass to subsequences, first so that
x′n → q and then so that yn → p and it follows that d(p, q) = L since

|L− d(y′, x′)| ≤ |L− d(yn, x
′
n)|+ |d(yn, x

′)− d(yn, x
′
n) + |d(yn, x

′)− d(y′, x′)|
≤ |L− d(yn, x

′
n)|+ d(x′, x′n) + |d(yn, y

′)| → 0.

Of course, p ∈ K2 and q ∈ K1 since these sets are closed, hence compact.
Perhaps a better way to see this first part is to see check that the function

f(y) = infx∈K1
d(x, y) defined on K2 is continuous, hence it attains its

supremum and this gives a pair (p, q). Continuity follows from the fact
that, for fixed y′ ∈ K2 if y ∈ B(y′, ε) ∩ K2 then |d(x, y) − d(x, y′)| < ε.
Thus the infimum, f(y) < f(y′) + ε since there exists x′ ∈ K1 such that
d(x′, y′) = f(y′) and hence d(x, y) < f(y′) + ε. Moreover, y′ ∈ B(y, ε)
and there exists x ∈ K1 such that d(x, y) = f(y), f(y′) < f(y) + ε. Thus
|f(y)− f(y′)| < ε and f is continuous.

Now, to see that D as defined is a metric, first note that it is non-negative
and by definition symmetric, D(K1,K2) = D(K2,K1). Since the infimum
is always zero, D(K,K) = 0. To see that D(K1,K2) 6= 0 when K1 6= K2

are both non-empty observe that, after exchanging the labels if necessary,
there is a point y ∈ K2 \K1. Then infx∈K1

d(x, y) > 0 since it is realized
at a point x ∈ K1 and necessarily x 6= y, so D(K1,K2) > 0.

So, only the triangle inequality remains. Let me do this somewhat geo-
metrically. Consider an arbitrary point p ∈ K1 and select x ∈ K2 such that
d(p, x) = infx′∈K2 d(p, x′). Having chosen this point, choose y ∈ K3 such
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that d(x, y) = infy′∈K3 d(x, y′). The triangle inequality gives

d(p, y) ≤ d(p, x) + d(x, y) ≤ D(K1,K2) +D(K2,K3)

since both terms on the right are infimums. Now, since y ∈ K3,

inf
z∈K3

d(p, x) ≤ d(p, y) ≤ D(K1,K2) +D(K2,K3).

Taking the supremum over p ∈ K1 then gives

sup
p∈K1

inf
z∈K3

d(p, x) ≤ D(K1,K2) +D(K2,K3).

Reversing the roles of K3 and K1 then shows that

D(K1,K3) ≤ D(K1,K2) +D(K2,K3).

One does not need to go through the ‘geometrical picture’ if you are con-
fident (competent?) with your infs and sups. Take the triangle inequality
for an arbitrary triple, pi ∈ Ki :

d(p1, p3) ≤ d(p1, p2) + d(p2, p3).

Now take the infimum of both sides over p3 ∈ K3 and use the definition of
D to see that

inf
p3∈K3

d(p1, p3) ≤ d(p1, p2) + inf
p3∈K3

d(p2, p3) ≤ d(p1, p2) +D(K2,K3).

Now we may take the infimum over p2 ∈ K2 since it only appears on the
right to get

inf
p3∈K3

d(p1, p3) ≤ inf
p2∈K2

d(p1, p2) +D(K2,K3) ≤ D(K1,K2) +D(K2,K3)

and then proceed as before – take the sup over p1.
(2) If f : [a, b] −→ R is differentiable (where a < b) and f ′(x) 6= 0 for all

x ∈ (a, b) show that f(b) 6= f(a).
Solution. Since f is differentiable on [a, b] it is continuous on [a, b] by a

Theorem in Rudin. The mean value theorem then shows that there exists
x ∈ (a, b) such that f(b) − f(a) = f ′(x)(b − a). Thus if f ′(x) 6= 0 for all
x ∈ (a, b) then f(b) 6= f(a).

(3) Rudin Chap 5 No 4. If Ci for 0 ≤ i ≤ n are real constants such that

C0 +
C1

2
+
C2

3
+ · · ·+ Cn−1

n
+

Cn

n+ 1
= 0

show that the equation

C0 + C1x+ C2x
2 + · · ·+ Cnx

n = 0

has at least one real solution x in the interval (0, 1).
Solution. The crucial obsevation is that if

p(x) = C0x+ C1
x2

2
+ C2

x3

3
+ · · ·+ Cn

xn+1

n+ 1
then

p′(x) = C0 + C1x+ C2x
2 + · · ·+ Cnx

n.

Certainly p(0) = 0 and by assumption, p(1) = 0. As a polynomial, p :
[0, 1] −→ R is (infinitely) differential, so by the mean value theorem there
is a point x ∈ (0, 1) such that

0 = p(1)− p(0) = p′(x)(1− 0) = p′(x)
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as desired.
(4) Suppose f : R −→ R is differentiable and that f ′(x) 6= 1 for all x ∈ R show

that there can be at most one x ∈ R such that f(x) = x (‘a fixed point of
f ’).

Solution. Suppose there were two distinct points x1 < x2 with f(x1) =
x1 and f(x2) = x2. Since f is differentiable on the real line, the function
g(x) = f(x)− x is continuous on [x1, x2] and differentiable so by the mean
value theorem there exists x ∈ (x1, x2) such that 0 = g(x2) − g(x1) =
g′(x)(x2 − x1) = (f ′(x)− 1)(x2 − x1). By assumption, f ′(x) 6= 1, so this is
a contradiction and there can be at most one fixed point of f.

(5) Rudin Chap 5 No 15. Suppose a ∈ R, f is a twice-differentiable real function
on (a,∞) and M0, M1 and M2 are the suprema of |f(x)|, |f ′(x)| and |f ′′(x)|
on (a,∞) (so all are assumed to be finite). Prove that

M2
1 ≤ 4M0M2.

[There is a hint in Rudin, namely Taylor’s theorem shows that given any
h > 0 and x ∈ (a,∞) there is ξ ∈ (x, x+ 2h) such that

f ′(x) =
1

2h
(f(x+ 2h)− f(x))− hf ′′(ξ).

Use this to show that |f ′(x)| ≤ hM2 + M0

h . For what value of h is the RHS
smallest?]

Solution. As Rudin suggests, using the twice-differentiability of f, which
means that f ′ is differentiable, apply Taylor’s theorem with remainder term
to see that for any h > 0 there exists ξ ∈ (x, x+ 2h) such that

f(x+ 2h) = f(x) + 2hf ′(x) +
h2

2
f ′′(ξ) =⇒ f ′(x) =

1

2h
(f(x+ 2h)− f(x))− hf ′′(ξ).

Now use the definitions of M0 and M2 to see that

|f ′(x)| ≤=
M0

h
+ hM2∀h > 0.

If M2 = 0 then letting h → ∞ shows that f ′(x) = 0 and similarly if
M0 = 0 then letting h → 0 leads to the same conclusion. So we may set

h = M
1
2
0 M

− 1
2

2 and deduce that

(1) |f ′(x)| ≤ 2(M0M2)
1
2 .

Taking the supremum over x ∈ (a,∞) and squaring gives the desired esti-
mate.


