HOMEWORK 6 FOR 18.100B/C, SECTION 1, FALL 2010 DUE THURSDAY 28 OCTOBER BY 11AM IN CLASS OR 2-108 OR BY EMAIL BEFORE 5PM.

(1) Rudin Chap 4, No 2. If $f: X \longrightarrow Y$ is a continuous map between metric spaces, $E \subset X$ and $f(E) \subset Y$ is its image under f, show that the closures satisfy

$$
f(\bar{E}) \subset \overline{f(E)}
$$

Give an example where the right side is strictly larger than the left.
(2) Consider the cartesian product $X \times Y=\{(x, y) ; x \in X, y \in Y\}$ of two metric spaces with the distance

$$
D\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)
$$

If $f: X \longrightarrow Y$ is any map, define its graph by

$$
G(f)=\{(x, y) \in X \times Y ; x \in X, y=f(x)\}
$$

Show that if f is continuous then $G(f)$ is closed.
Show that if X is compact then a map $f: X \longrightarrow Y$ is continuous if and only if its graph is compact.
(3) Let X_{1} and X_{2} be closed subsets of a metric space X such that $X=X_{1} \cup X_{2}$ and suppose $g_{i}: X_{i} \longrightarrow Y, i=1,2$, are two continuous maps defined on them. Show that if $g_{1}(x)=g_{2}(x)$ for all $x \in X_{1} \cap X_{2}$ then $g: X \longrightarrow Y$ where $g(x)=g_{i}(x)$ for $x \in X_{i}$ is continuous.
(4) Let $\left\{y_{n}\right\}$ be a sequence in a metric space Y. Define a map on the set

$$
D=\{1 / n \in[0,1] ; n \in \mathbb{N}\} \longrightarrow Y
$$

by $f\left(\frac{1}{n}\right)=y_{n}$. Show that f has a limit at 0 if and only if $\left\{y_{n}\right\}$ is convergent.
(5) Rudin Chap 4, No. 14. Show that any continuous map $f:[0,1] \longrightarrow[0,1]$ must have a fixed point, that is there exists at least one point $x \in[0,1]$ such that $f(x)=x$.
Here are some questions on connected sets, designed to clarify things a little. They are for your amusement only.
(1) Recall that given a subset $E \subset X$ of a metric space we have defined the condition on a subset $F \subset E$ that it be relatively open (or relatively closed) and the characterization of this. Check that $F \subset E$ is relatively closed in E if and only if $F=\bar{F} \cap E$ where \bar{F} is the closure in X. Show that a subset $E \subset X$ is connected if and only if the only decompositions of it into two disjoint relatively closed subsets $E=A \cup B$ has one of the sets empty.
(2) Suppose $f: X \longrightarrow Y$ is continuous and $E \subset X$, show that $\left.f\right|_{E}: E \longrightarrow Y$ is continuous with the metric on E induced from X.
(3) Show that if and $f: X \longrightarrow Y$ is continuous and $U \subset f(X)$ is relatively open (resp. relatively closed) set then $f^{-1}(U)$ is open (resp. closed).
(4) Suppose $E \subset X$ is connected and $f: X \longrightarrow Y$ is continuous, show that if $f(E)=A \cup B$ is a decomposition into relatively closed subsets then

HOMEWORK 6 FOR 18.100B/C, SECTION 1, FALL 2010 DUE THURSDAY 28 OCTOBER BY 11AM IN CLASS OR 2-108 OF
$E=\left(E \cap f^{-1}(A)\right) \cup\left(E \cap f^{-1}(B)\right)=\left.\left.f\right|_{E} ^{-1}(A) \cup f\right|_{E} ^{-1}(B)$ is a decomposition into relatively closed subsets.
(5) Deduce from this that the continuous image of a connected set is connected.

