HOMEWORK 6 FOR 18.100B/C, SECTION 1, FALL 2010 DUE THURSDAY 28 OCTOBER

(1) Rudin Chap 4, No 2. If $f: X \longrightarrow Y$ is a continuous map between metric spaces, $E \subset X$ and $f(E) \subset Y$ is its image under f, show that the closures satisfy

$$
f(\bar{E}) \subset \overline{f(E)}
$$

Give an example where the right side is strictly larger than the left.
Solution: Since $\overline{f(E)}$ is closed, $f^{-1}(\overline{f(E)})$ is closed by the assumed continuity of f. Moreover $E \subset f^{-1}(\overline{f(E)})$ since $E \subset f^{-1}(f(E))$. Since the closure of E is contained in any closed set containing $E, \bar{E} \subset f^{-1}(\overline{f(E)})$, but this implies that $f(x) \in \overline{f(E)}$ for each $x \in \bar{E}$, i.e. $f(\bar{E}) \subset \overline{f(E)}$.

As a counterexample to equality, consider $f:(0, \infty) \longrightarrow \mathbb{R}$ given by $f(x)=x$ with E taken as the domain, $E=(0, \infty)$ and hence closed. On the other hand the closure of the range is $[0, \infty)$ which is strictly larger than $f(E)=f(\bar{E})$.
(2) Consider the cartesian product $X \times Y=\{(x, y) ; x \in X, y \in Y\}$ of two metric spaces with the distance

$$
D\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)
$$

If $f: X \longrightarrow Y$ is any map, define its graph by

$$
G(f)=\{(x, y) \in X \times Y ; x \in X, y=f(x)\}
$$

Show that if f is continuous then $G(f)$ is closed.
Show that if X is compact then a map $f: X \longrightarrow Y$ is continuous if and only if its graph is compact.

Solution: The distance between pairs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ is the sum of the distances $d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)$. It follows that a sequence $\left(x_{n}, y_{n}\right)$ converges to a limit (x, y) if and only if both $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Indeed, $\left(x_{n}, y_{n}\right) \in$ $B((x, y), \epsilon)$ implies $x_{n} \in B(x, \epsilon)$ and $y_{n} \in B(y, \epsilon)$ and conversely $x_{n} \in$ $B(x, \epsilon / 2)$ and $y_{n} \in B(y, \epsilon / 2)$ implies $\left(x_{n}, y_{n}\right) \in B((x, y), \epsilon)$. Thus all but a finite number of elements of the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ lie in a given open ball around (x, y) if and only if the same is true for both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$. So, suppose $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ with $\left(x_{n}, y_{n}\right) \in G(f)$. This implies $y_{n}=f\left(x_{n}\right)$ by the definition of the graph and $x_{n} \rightarrow x, f\left(x_{n}\right) \rightarrow y$ by the observation above. However, f is assumed to be continuous, so $f\left(x_{n}\right) \rightarrow f(x)$ which implies that $y=f(x)$ and hence $(x, y) \in G(f)$. Thus every sequence in $G(f)$ which converges in $X \times Y$ has limit in $G(f)$ which is therefore closed.

Suppose first that X is compact and f is continuous. To see that $G(f)$ is compact, consider an infinite subset E of it. Since $(x, y) \in E$ implies $y=f(x)$ this can only be infinite if $E_{1}=\{x \in X ;(x, y) \in E\}$ is infinite. Since X is compact, this must have a limit point, which is therefore the limit of a sequence x_{n} converging in X with limit $x \in E_{1}$ and with all x_{n} distinct and not equal to x. The continuity of f shows that $f\left(x_{n}\right) \rightarrow f(x)$ and hence
$(x, f(x))$ is a limit point of E (since all the $\left(x_{n}, f\left(x_{n}\right)\right)$ are distinct) so $G(f)$ is compact.

Conversely, suppose that $G(f)$ is compact (with the metric from $X \times Y$ of course). Consider a general $C \subset Y$ which is closed. Suppose $x_{n} \in f^{-1}(C)$ and $x_{n} \rightarrow x$ in X. Then $\left(x_{n}, f\left(x_{n}\right)\right) \in G(f)$ has a convergent subsequence $\left(x_{n_{k}}, f\left(x_{n_{k}}\right)\right.$ with limit $(x, y) \in G(f)$ (since it is closed) so $y=f(x) \in X$ and since $f\left(x_{n_{k}}\right) \rightarrow y$ in Y (as discussed above) $y=f(x) \in C$. Thus $x \in f^{-1}(C)$ which must therefore be closed and hence f must be continuous.

Here is a much more sophisticated proof of the second part based on the fact that the two 'projection' maps $\pi_{1}: X \times Y \longrightarrow X$ and $\pi_{2}: X \times Y \longrightarrow Y$ are both continuous. Namely for any map f the inverse image of a set $C \subset Y$ is precisely $f^{-1}(C)=\pi_{1}(X \times C \cap G(f))$. Indeed, if $x \in f^{-1}(C)$ then $y=f(x) \in C$ so there is a point $(x, f(x)) \in G(f) \cap(X \times C)$ with $\pi_{1}\left((x, f(x))=x\right.$. Conversely if $x=\pi_{1}(x, y)$ with $(x, y) \in G(f) \cap(X \times C)$ then $y=f(x) \in C$. Now, $X \times C=\pi_{2}^{-1}(C)$ so we have written $f^{-1}(C)=$ $\pi_{1}\left(G(f) \cap \pi_{2}^{-1}(C)\right)$. If C is closed and we assume that $G(f)$ is compact then $\pi_{2}^{-1}(C)$ is closed by the continuity of $\pi_{2}, G(f) \cap\left(\pi_{2}^{-1}(C)\right)$ is compact by the assumed compactness of $G(f)$ and hence $f^{-1}(C)=\pi_{1}\left(G(f) \cap \pi_{2}^{-1}(C)\right)$ is compact, by the continuity of π_{1} hence closed. Thus f is continuous since the inverse image of any closed set is closed. The corresponding 'sophisticated' proof of the first part (proving $G(f)$) is compact) is to realize that if f is continous then the map $I_{f}: X \longrightarrow Y \times Y$ where $I_{f}(x)=(x, f(x))$ is also continuous - using for instance the convergence discussion above - so $G(f)=I_{f}(X)$ is compact if X is compact. You could also see the converse, assuming $G(f)$ is compact, by observing that $L_{f}: X \longrightarrow G(f)$, just I_{f} with the target space reduced to $G(f)$, is 1-1 and onto and has continuous inverse $\left.\pi_{1}\right|_{G(f)}$ so, by a Theorem in Rudin, the inverse of π_{1}, i.e. $L_{f}: X \longrightarrow G(f)$ is continuous, but then $f=\pi_{2} \cap L_{f}$ is also continuous.

So many possibilities it is hard to choose
(3) Let X_{1} and X_{2} be closed subsets of a metric space X such that $X=X_{1} \cup X_{2}$ and suppose $g_{i}: X_{i} \longrightarrow Y, i=1,2$, are two continuous maps defined on them. Show that if $g_{1}(x)=g_{2}(x)$ for all $x \in X_{1} \cap X_{2}$ then $g: X \longrightarrow Y$ where $g(x)=g_{i}(x)$ for $x \in X_{i}$ is continuous.

Solution: First note that $g: X \longrightarrow Y$ is a well-defined map, since if $x \in X$ then either $x \in X_{1} \backslash X_{2}$ or $x \in X_{2} \backslash X_{2}$ or $x \in X_{1} \cap X_{2}$. In each case $g(x)$ is well defined as $g_{1}(x), g_{2}(x)$ or the common value $g_{1}(x)=g_{2}(x)$.

Maybe the conceptually easiest way to see the continuity is to use sequences. Suppose $x_{n} \rightarrow x$ in X. Consider all those x_{n} which lie in X_{1}. If there are only finitely many then eventually $x_{n} \in X_{2}$ and hence $g\left(x_{n}\right)=$ $g_{2}\left(x_{n}\right)$ for large n converges to $g_{2}(x)=g(x)$ since X_{2} is closed (so $x \in X_{2}$) and g_{2} is continuous. Otherwise there is a subsequence of x_{n} in X_{1} which therefore converges to $x \in X_{1}$, since X_{1} is closed, so along this subsequence $g_{1}\left(x_{n_{k}}\right) \rightarrow g_{1}(x)=g(x)$. Now, either the number of points not in X_{1} is finite or else forms a subsequence in X_{2}, which therefore converges as before. In the first case it follows immediately $g\left(x_{n}\right) \rightarrow g(x)$ and also in the second, since give an open ball centered at $g(x)$ the image of the first subsequence under g_{1} and the image of the complementary subsequence under g_{2} both
line in this ball from some integer onwards. Thus $g\left(x_{n}\right) \rightarrow g(x)$ in all cases and hence g is continuous.

It is probably easier to use closed sets. Suppose $C \subset Y$ is closed. Then $x \in g^{-1}(C)$ if either $x \in X_{1}$ and $g_{1}(x) \in C$ or $x \in X_{2}$ and $g_{2}(x) \in C$. Thus $g^{-1}(C)=g_{1}^{-1}(C) \cup g_{2}^{-1}(C)$. By assumption $g_{1}: X_{1} \longrightarrow Y$ and $g_{2}: X_{2} \longrightarrow Y$ are continuous, so $g_{i}^{-1}(C) \subset X_{i}$ for $i=1,2$, is closed as a subset of X_{i} as a metric space. However, since the X_{i} are closed, being relatively closed in X_{i} is the same as being closed in X. Thus $g^{-1}(C)$ is closed, as the union of two closed sets.
(4) Let $\left\{y_{n}\right\}$ be a sequence in a metric space Y. Define a map on the set

$$
D=\{1 / n \in[0,1] ; n \in \mathbb{N}\} \longrightarrow Y
$$

by $f\left(\frac{1}{n}\right)=y_{n}$. Show that f has a limit at 0 if and only if $\left\{y_{n}\right\}$ is convergent.
Solution. This is just the definitions. Namely, f has a limit y at 0 if and only if, given $\epsilon>0$ there exists $\delta>0$ such that $0<d(0,1 / n)=1 / n<\delta$ implies $d(y, f(1 / n))=d\left(y, y_{n}\right)<\epsilon$. Of course $y_{n} \rightarrow y$ if and only if given $\epsilon>0$ there exists N such that $n>N$ implies $d\left(y, y_{n}\right)<\epsilon$. These are completely equivalent, just by taking $N=1 / \delta$.
(5) Rudin Chap 4, No. 14. Show that any continuous map $f:[0,1] \longrightarrow[0,1]$ must have a fixed point, that is there exists at least one point $x \in[0,1]$ such that $f(x)=x$.

Solution: Consider the subsets $L=\{x \in[0,1] ; f(x) \leq x\}$ and $U=\{x \in$ $[0,1] ; f(x) \geq x\}$. These are non-empty, since $0 \in L$ and $1 \in U$. They are both closed, since $g:[0,1] \longrightarrow \mathbb{R}$ defined by $g(x)=f(x)-x$ is continuous and $L=g^{-1}((\infty, 0]), U=g^{-1}([0, \infty))$. A point $x \in[0,1]$ satisfies $f(x)=x$ if and only if $x \in L \cap U$. The set $L \cap U$ cannot be empty, since if it was then L and U would be non-empty, disjoint, closed subsets with $L \cup U=[0,1]$ contradicting the known connectedness of $[0,1]$. Thus at least one such fixed point must exist.
Here are some questions on connected sets, designed to clarify things a little. They are for your amusement only.
(1) Recall that given a subset $E \subset X$ of a metric space we have defined the condition on a subset $F \subset E$ that it be relatively open (or relatively closed) and the characterization of this. Check that $F \subset E$ is relatively closed in E if and only if $F=\bar{F} \cap E$ where \bar{F} is the closure in X. Show that a subset $E \subset X$ is connected if and only if the only decompositions of it into two disjoint relatively closed subsets $E=A \cup B$ has one of the sets empty.
(2) Suppose $f: X \longrightarrow Y$ is continuous and $E \subset X$, show that $\left.f\right|_{E}: E \longrightarrow Y$ is continuous with the metric on E induced from X.
(3) Show that if and $f: X \longrightarrow Y$ is continuous and $U \subset f(X)$ is relatively open (resp. relatively closed) set then $f^{-1}(U)$ is open (resp. closed).
(4) Suppose $E \subset X$ is connected and $f: X \longrightarrow Y$ is continuous, show that if $f(E)=A \cup B$ is a decomposition into relatively closed subsets then $E=\left(E \cap f^{-1}(A)\right) \cup\left(E \cap f^{-1}(B)\right)=\left.\left.f\right|_{E} ^{-1}(A) \cup f\right|_{E} ^{-1}(B)$ is a decomposition into relatively closed subsets.
(5) Deduce from this that the continuous image of a connected set is connected.

