HOMEWORK 6 FOR 18.100B/C, SECTION 1, FALL 2010

(1)

DUE THURSDAY 28 OCTOBER

Rudin Chap 4, No 2. If f : X — Y is a continuous map between metric
spaces, E C X and f(F) C Y is its image under f, show that the closures
satisfy

f(E) C f(E).
Give an example where the right side is strictly larger than the left.

Solution: Since f(E) is closed, f~*(f(E)) is closed by the assumed con-
tinuity of f. Moreover E C f~!(f(E)) since E C f~(f(E)). Since the
closure of E is contained in any closed set containing E, E C f~1(f(E)),
but this implies that f(z) € f(E) for each z € E, i.e. f(E) C f(E).

As a counterexample to equality, consider f : (0,00) — R given by
f(z) = x with E taken as the domain, £ = (0,00) and hence closed. On
the other hand the closure of the range is [0,00) which is strictly larger
than f(E) = f(E).

Consider the cartesian product X x Y = {(z,y);z € X, y € Y} of two
metric spaces with the distance

D((z,y), (2", y')) = dx (2, 2") + dy (y,9).
If f: X — Y is any map, define its graph by
G(f)={(z,y) e X xYiz e X, y= f(z)}

Show that if f is continuous then G(f) is closed.
Show that if X is compact then a map f : X — Y is continuous if
and only if its graph is compact.

Solution: The distance between pairs (z,y) and (z/,y’) is the sum of the
distances dx (z, ') +dy (y,y’). It follows that a sequence (z,,y,) converges
to a limit (z,y) if and only if both z,, — « and y,, — y. Indeed, (x,,y,) €
B((z,y),€) implies x,, € B(z,€) and y, € B(y,e) and conversely x,, €
B(z,€/2) and y,, € B(y,€/2) implies (zn,yn) € B((z,y),€). Thus all but a
finite number of elements of the sequence {(z,,,y,)} lie in a given open ball
around (z,y) if and only if the same is true for both {z,} and {y,}. So,
suppose (Tn,Yn) — (2,y) with (z,,yn) € G(f). This implies y, = f(xy)
by the definition of the graph and z,, — =, f(z,) — y by the observation
above. However, f is assumed to be continuous, so f(z,) — f(z) which
implies that y = f(x) and hence (z,y) € G(f). Thus every sequence in
G(f) which converges in X x Y has limit in G(f) which is therefore closed.

Suppose first that X is compact and f is continuous. To see that G(f)
is compact, consider an infinite subset E of it. Since (x,y) € E implies
y = f(x) this can only be infinite if B} = {& € X;(z,y) € E} is infinite.
Since X is compact, this must have a limit point, which is therefore the limit
of a sequence x,, converging in X with limit z € E; and with all z,, distinct
and not equal to z. The continuity of f shows that f(x,) — f(z) and hence
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(z, f(x)) is a limit point of E (since all the (z,, f(z,)) are distinct) so G(f)
is compact.

Conversely, suppose that G(f) is compact (with the metric from X xY of
course). Consider a general C' C Y which is closed. Suppose z,, € f~1(C)
and z, — = in X. Then (z,, f(x,)) € G(f) has a convergent subsequence
(Tny, f(xn,,) with limit (z,y) € G(f) (since it is closed) so y = f(x) € X
and since f(z,,) — v in Y (as discussed above) y = f(z) € C. Thus
x € f~1(C) which must therefore be closed and hence f must be continuous.

Here is a much more sophisticated proof of the second part based on the
fact that the two ‘projection’ maps 7 : X XY — X and mp : X XY — Y
are both continuous. Namely for any map f the inverse image of a set
C C Y is precisely f~1(C) = m(X x CNG(f)). Indeed, if z € f~1(C)
then y = f(z) € C so there is a point (z, f(z)) € G(f) N (X x C) with
m1((x, f(x)) = x. Conversely if x = 7 (z,y) with (z,y) € G(f) N (X x C)
then y = f(z) € C. Now, X x C = 7, }(C) so we have written f~1(C) =
T (G(f)Nmy 1 (C)). If C is closed and we assume that G(f) is compact then
75 1(C) is closed by the continuity of o, G(f) N (75 }(C)) is compact by
the assumed compactness of G(f) and hence f~1(C) = 1 (G(f) N7y *(C))
is compact, by the continuity of m; hence closed. Thus f is continuous
since the inverse image of any closed set is closed. The corresponding
‘sophisticated’ proof of the first part (proving G(f)) is compact) is to realize
that if f is continous then the map Iy : X — Y XY where I;(z) = (z, f(z))
is also continuous — using for instance the convergence discussion above — so
G(f) = Iy(X) is compact if X is compact. You could also see the converse,
assuming G(f) is compact, by observing that Ly : X — G(f), just Iy with
the target space reduced to G(f), is 1-1 and onto and has continuous inverse
7r1|G(f) so, by a Theorem in Rudin, the inverse of 7, i.e. Ly : X — G(f)
is continuous, but then f = m N Ly is also continuous.

So many possibilities it is hard to choose ....

Let X7 and X5 be closed subsets of a metric space X such that X = X;UX,
and suppose g; : X; — Y, i = 1,2, are two continuous maps defined on
them. Show that if gi(z) = ga(z) for all x € Xy N Xz then g : X — Y
where g(x) = g;i(z) for x € X; is continuous.

Solution: First note that g : X — Y is a well-defined map, since if
x € X then either z € X7\ X or z € X5\ X5 or 2 € X; N X5. In each case
g(x) is well defined as g1(x), g2(x) or the common value gy (z) = ga2(z).

Maybe the conceptually easiest way to see the continuity is to use se-
quences. Suppose z, — x in X. Consider all those x,, which lie in X;. If
there are only finitely many then eventually x,, € X5 and hence g(x,) =
g2(xy) for large n converges to g2(z) = g(z) since X is closed (so z € X3)
and go is continuous. Otherwise there is a subsequence of z,, in X; which
therefore converges to x € X7, since X is closed, so along this subsequence
91(xn,) — g1(z) = g(x). Now, either the number of points not in X; is fi-
nite or else forms a subsequence in Xs, which therefore converges as before.
In the first case it follows immediately g(x,) — g(z) and also in the second,
since give an open ball centered at g(x) the image of the first subsequence
under g; and the image of the complementary subsequence under g both
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line in this ball from some integer onwards. Thus g(x,) — g(z) in all cases
and hence g is continuous.

It is probably easier to use closed sets. Suppose C' C Y is closed. Then
x € g7 1(C) if either z € X; and g1(x) € C or z € X5 and ga(z) € C.
Thus g~ *(C) = ¢; '(C) U g5 '(C). By assumption g; : X; — Y and
g2 : Xo — Y are continuous, so g; (C) C X; for i = 1,2, is closed as
a subset of X; as a metric space. However, since the X; are closed, being
relatively closed in X; is the same as being closed in X. Thus g~!(C) is
closed, as the union of two closed sets.
Let {y,} be a sequence in a metric space Y. Define a map on the set

D={1/ne[0,1;neN} — Y

by f(1) = y,,. Show that f has a limit at 0 if and only if {y,} is convergent.

Solution. This is just the definitions. Namely, f has a limit y at 0 if and
only if, given € > 0 there exists § > 0 such that 0 < d(0,1/n) =1/n < 6
implies d(y, f(1/n)) = d(y,yn) < €. Of course y, — y if and only if given
€ > 0 there exists N such that n > N implies d(y,y,) < €. These are
completely equivalent, just by taking N = 1/4.

Rudin Chap 4, No. 14. Show that any continuous map f : [0,1] — [0, 1]
must have a fixed point, that is there exists at least one point x € [0,1]
such that f(z) = z.

Solution: Consider the subsets L = {z € [0,1]; f(z) <z} and U = {z €
[0,1]; f(x) > x}. These are non-empty, since 0 € L and 1 € U. They are
both closed, since g : [0,1] — R defined by g(z) = f(z) — z is continuous
and L = g=1((00,0]), U = g~ ([0, )). A point = € [0, 1] satisfies f(z) =z
if and only if z € LNU. The set LNU cannot be empty, since if it was then
L and U would be non-empty, disjoint, closed subsets with LU U = [0, 1]
contradicting the known connectedness of [0, 1]. Thus at least one such fixed
point must exist.

Here are some questions on connected sets, designed to clarify things a little.
They are for your amusement only.

(1)

()

Recall that given a subset £ C X of a metric space we have defined the
condition on a subset F' C F that it be relatively open (or relatively closed)
and the characterization of this. Check that F' C F is relatively closed in
E if and only if F = FNE where F is the closure in X. Show that a subset
E C X is connected if and only if the only decompositions of it into two
disjoint relatively closed subsets = A U B has one of the sets empty.
Suppose f: X — Y is continuous and F C X, show that f|E E—Y
is continuous with the metric on E induced from X.

Show that if and f : X — Y is continuous and U C f(X) is relatively
open (resp. relatively closed) set then f~1(U) is open (resp. closed).
Suppose E C X is connected and f : X — Y is continuous, show that
if f(E) = AU B is a decomposition into relatively closed subsets then
E=(Enf Y (A)U(ENF(B)) = f|5 (A US|, (B) is a decomposition
into relatively closed subsets.

Deduce from this that the continuous image of a connected set is connected.



