HOMEWORK 5 FOR 18.100B AND 18.100C, FALL 2010

Paper solutions Due 11AM, Thursday, October 21, in lecture or 2-108, Electronic submission to rbm at math dot mit dot edu by 5 PM .
HW5.1 Modified version of Rudin Ch 3 No 1. Prove that for a sequence s_{n} in \mathbb{C}, the convergence of s_{n} implies the convergence of $\left|s_{n}\right|$. Give a counterexample to the converse statement.
HW5.2 Rudin Ch 3 No 7. Show that if $a_{n} \geq 0$ and $\sum_{n} a_{n}$ converges then $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges.
HW5.3 Rudin Ch 3 No 16. Fix a positive number α. Choose $x_{1}>\sqrt{\alpha}$, and define a sequence x_{2}, x_{3}, \ldots by the recursion formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right) .
$$

(a) Prove that x_{n} decreases monotonically and that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{\alpha}$.
(b) Set $\epsilon_{n}=x_{n}-\sqrt{\alpha}$ and and show that

$$
\epsilon_{n+1}=\frac{\epsilon_{n}^{2}}{2 x_{n}}<\frac{\epsilon_{n}^{2}}{2 \sqrt{\alpha}}
$$

so that if $\beta=2 \sqrt{\alpha}$ then

$$
\epsilon_{n+1}<\beta\left(\frac{\epsilon_{1}}{\beta}\right)^{2^{n}}
$$

(c) This is a good algorithm for computing square roots, since the recursion formula is simple and the convergence is extremely rapid. For example, if $\alpha=3$ and $x_{1}=2$, show that $\epsilon_{1} / \beta<1 / 10$ and therefore

$$
\epsilon_{5}<4 \cdot 10^{-16}, \epsilon_{6}<4 \cdot 10^{-32}
$$

HW5.4 Let $f: X \longrightarrow Y$ be a map between sets. Let $\mathcal{P}(X)$ and $\mathcal{P}(Y)$ be the power sets - the collection of subsets respectively of X and Y. Define maps

$$
\begin{gathered}
f_{\#}: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y), f_{\#}(A)=\{y \in Y ; \exists a \in A \text { with } y=f(a)\} \\
f^{\#}: \mathcal{P}(Y) \longrightarrow \mathcal{P}(X), f^{\#}(B)=\{x \in X ; f(x) \in B\}
\end{gathered}
$$

(usually denoted as f and f^{-1} respectively). Compute the two composite maps $f^{\#} \circ f_{\#}: \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ and $f_{\#} \circ f^{\#}: \mathcal{P}(Y) \longrightarrow \mathcal{P}(Y)$.
HW5.5 Show that for each fixed point p in a metric space X the distance from p, $f(x)=d(x, p)$ defines a continuous function $f: X \longrightarrow \mathbb{R}$.

