
HOMEWORK 4 FOR 18.100B AND 18.100C, FALL 2010

SOLUTIONS, SOMEWHAT WORDY.

As usual the problems will each be worth 10 points and clarity is especially
prized.

HW4.1 Rudin Chap 2, 22:- A metric space is said to be separable if it contains a
countable dense subset. Show that Rk is separable.

Solution. The subset Qk, consisting of the k-tuples of real numbers all
of whose entries are rational, is dense. To see this, recall that between
any two distinct real numbers there is a rational. So if ε > 0 is given and
x = (x1, . . . , xk) ∈ Rk then there exists, for each j = 1, . . . , k some qj ∈ Q
satisfying xj < qk < ε/k. It follows that if q = (q1, . . . , qk) then

|x− q| = (

k∑
j=1

|xj − qj |2)
1
2 < k−

1
2 ε ≤ ε.

Thus each ball with positive radius around any point x ∈ Rk contains a
point of Qk, which is therefore dense in Rk.

We also know that Q is countable, hence Qk is countable as a (finite)
product of countable sets. Thus Rk is separable since it has a countable
dense subset.

HW4.2 Rudin Chap 2, 23 (reworded):- Prove that for every separable metric space
there is a countable collection {Bj}j∈N, of open balls (neighborhoods to
Rudin) with the property that for any open set G and any x ∈ G there is
a Bj such that x ∈ Bj ⊂ G.

Solution: Let X be the metric space. By assumption it is separable, so
let D be a countable dense subset. Then consider the collection, B of all
open balls with centers from D and radius 1/n for some n ∈ N. This is a
countable collection since it is in 1-1 correspondence with D × N which is
countable as the product of (at most in the case of D) countable sets.

Now, suppose G ⊂ X is open and x ∈ G. Then there exists ε > 0 such
that B(x, ε) ⊂ G. Since D is dense in X, given n ∈ N with n > 2/ε, there
exists some p ∈ D such that x ∈ B(p, 1/n) ∈ B. By the triangle inequality, if
y ∈ B(p, 1/n) then d(y, x) ≤ d(y, p)+d(p, x) ≤ 2/n < ε so y ∈ B(x, ε) ⊂ G.
Thus x ∈ B(p, 1/n) ⊂ G as desired and B satisfies the required property.

HW4.3 Rudin Chap 2, 24:- Prove that any metric space with the property that
every infinite subset has a limit point is separable. Hint – show that for
each n ∈ N there are finitely many balls or radius 1/n which together cover
the metric space (otherwise there is an infinite set with all points distant
at least 1/n apart).

Solution: Let X be a metric space with the property that every infinite
subset of it has a limit point. For each n ∈ N choose a subset of X by
first choosing one point. Then, if possible, choose a second point at least
distance 1/n from the first. Proceed in this way, at each stage choosing a
point distant 1/n or more from all the previous choices. At some point no
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further choices are possible since a set with all points distant at least 1/n
from each other cannot have a limit point, so an infinite number of such
choices in X is not possible. Thus, for each n this procedure gives a finite
set such that the balls of radius 1/n with elements of this set as centers
covers X. The union of these finite sets is a(n at most) countable set which
is dense in X since for every x ∈ X and every ε > 0 one can choose n > 1/ε
and then there is a point in the set distant at most 1/n < ε from x.

HW4.4 Rudin Chap 2, 26. Let X be a metric space in which every infinite subset
contains a limit point, prove that X is compact. Hint – Combining the
preceding two questions conclude that there is a collection of balls {Bj}
as above and use this to show that every open cover of X has a countable
subcover. Thus it suffices to show that every countable open cover Gj has a
finite subcover. If not, show that the closed sets Fn = X \

⋃n
k=1Gk decrease

as n increases and are infinite but that
⋂
n Fn = ∅. So we can choose a

countably infinite set E with the nth point in Fn. However a limit point of
this set would be in each Fn, so . . . .

Solution: If X is a metric space in which every infinite set has a limit
point, we know that X is separable by the preceding problem. Then choose
a countable collection of balls B as HW4.2. Now, given an open cover Gα
of X for each x ∈ X there is a B ∈ B such that x ∈ B ⊂ Gα for some α.
For each B ∈ B either choose an α such that B ⊂ Gα, if there is one, or
else do nothing. This determines an at most countable subcover of the Gα
since every x ∈ X is contained in one of the balls which are contained in a
Gα.

Thus, we can consider a countable subcover Gj – if it is finite we are
already done. The sets

Fn = X \ (

n⋃
j=1

Gj)

are closed, as the complements of open sets, and decrease with n. To say
that the Gj cover is to say

⋂
n Fn = ∅. Suppose that no Fn is empty. Then

we can choose a subset E of X by choosing successive elements xn ∈ Fn.
This set must be infinite, since if it were finite we must have made the
same choice infinitely often, and since the Fn are getting smaller this would
mean there was a point in

⋂
n Fn. Thus, E must have a limit point. Now,

for each n all but a finite number of points of E are in Fn thus the limit
point must also be a limit point of E ∩Fn for each n. Hence, since they are
closed, it must be in Fn for each n. Thus, again, we have found a point in⋂
n Fn so the assumption that each Fn is non-empty must be false. Hence

X =
⋃n
j=1Gj for some n so Gj does indeed have a finite subcover. Thus

X is compact since it has the property that every open cover has a finite
subcover.

HW4.5 Rudin Chap 2, 29. Prove that any open set in R is the union of a collection
of pairwise disjoint open intervals which is at most countable. Note – the
pairwise was added afterwards, since a few people were confused by the
meaning of ‘disjoint’ otherwise.

Solution: Observe that the union of any collection of open intervals which
all contain a common point is an open interval (possibly infinite) with end
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points the infimum of the lower end points (if this set is not bounded below
then −∞) or supremum of the upper end points (or +∞ if this set is not
bounded above). Now, take a point in O ∩ Q and consider the union of
all the open intervals which contain it and are contained in O. Then, if
possible, select a point in O ∩ Q which is not in this first interval and
proceed. This constructs an at most countable collection of intervals which
are contained in O and together cover it. They must be disjoint since if two
have non-empty intersection the union is an interval which would contain
any point in either, so must be equal to the first.


