
HOMEWORK 3 FOR 18.100B/C, FALL 2010

SOLUTIONS

As usual, physical homework due in 2-108 by 11AM. Electronic submission (to
rbm at math dot mit dot edu) up to 5PM.

HW3.1 Let X be a set with the discrete metric

d(x, y) =

{
0 if x = y

1 otherwise.

Which subsets of X are compact? Of course you should justify your answer.
Solution: The only subsets of X with the discrete metric which are com-

pact are finite sets. Certainly finite sets are compact in any metric space,
since any open cover has a finite subcover, given by choosing an element
of the cover which contains each remaining point in the set successively.
Conversely if K ⊂ X then consider the open cover consisting of the open
balls B(x, 12 ) of radius 1

2 for each x ∈ K. The ball B(x, 12 ) contains only
the point x of X so if this cover has a finite subcover, which it must if K is
compact, then K is finite since this open cover presents it as a finite union
of points.

HW3.2 Rudin, Chap. 2, Problem 9 extended a little: Let E◦ denote the set of all
interior points of a set E (called the interior of E) in a metric space X –
recall that an interior point of E is a point p ∈ E such that B(p, ε) ⊂ E for
some ε > 0.
(a) Prove that E◦ is open.
(b) Prove that E is open if and only if E◦ = E.
(c) If G ⊂ E and G is open, prove that G ⊂ E◦.
(d) Prove that the complement of E◦ is the closure of the complement of

E.
(e) Show that E◦ is the union of all open sets contained in E.
(f) Do E and E always have the same interiors?
(g) Do E and E◦ necessarily have the same closures?

Solution:
(a) By definition, if x ∈ E◦ then for some ε > 0, B(x, ε) ⊂ E. Since B(x, ε)

is open, for each y ∈ B(x, ε), there exists δ > 0, in fact it suffices to
take δ < ε − d(x, y), such that B(y, δ) ⊂ B(x, ε) ⊂ E. Thus in fact
B(x, ε) ⊂ E◦ which is therefore open.

(b) Certainly if E = E◦ then E is open by the preceding result. If E is
open then for each x ∈ E there exists ε > 0 such that B(x, ε) ⊂ E, so
x ∈ E◦ and hence E◦ = E.

(c) If G ⊂ E is open then for each x ∈ G there exists ε > 0 such that
B(x, ε) ⊂ G ⊂ E so x ∈ E◦ and hence G ⊂ E◦.

(d) Since E◦ is open, X \ E◦ is closed, but E◦ ⊂ E implies (X \ E) ⊂
(X \E◦) so X \E◦ is a closed set containing X \E which implies, by a

result in class/Rudin, that X \ E ⊂ X \E◦. Conversely, if X \E ⊂ C
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and C is closed, then G = (X \C) ⊂ E is open, so by the result above,
G ⊂ E◦ which implies C ⊃ (X \ E◦). Thus

X \ E◦ =
⋂
{C;C ⊃ (X \ E), C closed} =⇒ X \ E◦ = X \ E

again by a result in class/Rudin.
(e) As shown above, E◦ contains all open (in X) subsets of E and is itself

open, so E◦ =
⋃
{G ⊂ E;G open}.

(f) No, not in general. For instance Q ⊂ R has empy interior whereas its
closure, R is open.

(g) No, not in general. For instance if E consists of one point in R then it
has no interior so the closure of its interior is strictly smaller than E.

HW3.3 Rudin Chap. 2, Problem 12: Let K ⊂ R consist of 0 and the numbers 1/n,
for n = 1, 2, 3, . . .. Prove that K is compact directly from the definition
(without using the Heine-Borel theorem).

Solution: Consider any open cover of K, K ⊂
⋃

a∈AOa. There must be
at least one a1 ∈ A such that 0 ∈ Oa1 , since 0 ∈ K. Since this Oa1 is open,
there exists ε > 0 such that B(0, ε) ⊂ Oa1 . By the Archimedean principle,
there exists N such that if n > N then 1/n < ε which implies 1/n ∈ Oa1

.
Thus, all but a finite number of points, namely {1/n;n ≤ N} of K lie in
this Oa1

and each of these lies in (at least) one of the open sets, so the open
cover has a finite subcover.

HW3.4 Rudin, Chap. 2, Problem 16: Regard Q, the set of all rational numbers, as
a metric space, with d(p, q) = |p − q|. Let E be the set of all p ∈ Q such
that 2 < p2 < 3. Show that E is closed and bounded in Q, but that E is
not compact. Is E open in Q?

Solution: Now we know about the reals, and Q ⊂ R has the same metric,
so we can use the properties of relatively open and closed sets. We know
that

√
2 and

√
3 are not rational, hence

(1) E = {p ∈ Q;
√

2 ≤ p ≤
√

3} = [
√

2,
√

3] ∩Q
is closed in Q by the properties of relatively closed sets. [Or you can prove
it directly of course.] This also shows that E is bounded.

The open sets (in Q mind!) On = (
√

2,
√

3 − 1/n/) ∩ Q cover E since

if p ∈ E then
√

3 − p > 0 so n ∈ N large enough,
√

3 − p > 1/n implies
p ∈ On. These sets increase as n increases, so if there was a finite subcover
then E ⊂ On for some n but by the density of the rationals in the reals,
there exists p ∈ Q such that

√
3 − 1/n < p <

√
3 and for n > 1 large this

implies that p ∈ E but p /∈ Qn. Thus E cannot be compact since this open
cover has no finite subcover.

You could also construct an infinite subset without a limit point in E.
It does follow that E is open by the same type of argument as above,

namely

(2) E = {p ∈ Q;
√

2 < p <
√

3} = (
√

2,
√

3) ∩Q
is open in Q by the properties of relatively open subsets.

HW3.5 Prove that every compact metric space has a countable dense subset. Hint:
For each natural number n look at the open cover given by all open balls
of radius 1/n, use compactness to get a finite subcover and look at all the
centers of the balls in these finite subcovers.
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Solution: Just as the hint says! Let X be a compact metric space and
consider the open cover, for n ∈ N fixed,

(3) X =
⋃
x∈X

B(x, 1/n).

By the assumed compactness this must have a finite subcover, let Dn be
the set of centers of some such finite subcover. Doing this for each n let
D =

⋃
nDn be the union, which is (at most) countable. Thus, if x ∈ X

and ε > 0 then there exists n ∈ N such that 1/n < ε. By the covering
property, there exists y ∈ Dn ⊂ D such that x ∈ B(y, 1/n) which implies
y ∈ B(x, 1/n) ⊂ B(x, ε). Thus every open ball around an arbitrary point,
x ∈ X, contains a point of D. Thus, D is dense in X which therefore has a
countable dense subset.


