HOMEWORK 2 FOR 18.100B/C SECTION 1, FALL 2010 DUE THURSDAY, SEPTEMBER 23 AT 11 IN 2-108 OR BY 5PM ELECTRONICALLY.

HW2.1 Rudin Chap 1, Prob 13: If x and y are complex numbers show that

$$
\| x|-|y|| \leq|x-y|
$$

HW2.2 Let (X, d) be a metric space - i.e. d is a metric on X. Define the (British Railway) 'metric' on X by choosing a point $L \in X$ and defining
(a) $d_{\mathrm{BR}}(x, x)=0, \forall x \in X$.
(b) $d_{\mathrm{BR}}(x, y)=d(x, L)+d(L, y)$ if $x \neq y$.

Show that this is indeed a metric and that every subset of X not containing L is open. (Note that L represents London!)
HW2.3 Rudin Chap 2, Prob 4. Is the set of irrational numbers countable? (Justify your answer!)
HW2.4 Rudin Chap 2, Prob 5. Construct a bounded subset of \mathbb{R} which has exactly three limit points.
HW2.5 In each case determine whether the given function d is a metric (Prove your answer!).
(a) Fix $N \in \mathbb{N}$. Let X be the set of sequences of zeroes and ones of total length N. For two sequences x, y let $d(x, y)$ be the number of places at which the two sequences differ.
(b) $X=\mathbb{R}, d(x, y)=(x-y)^{2}$.
(c) $X=\mathbb{R}, d(x, y)=\sqrt{|x-y|}$.
(d) $X=\mathbb{R}, d(x, y)=|x-2 y|$.
(e) $X=\mathbb{R}, d(x, y)=\frac{|x-y|}{1+|x-y|}$.

