HOMEWORK 10 FOR 18.100B/C, FALL 2010 DUE THURSDAY 2 DECEMBER

As usual, homework is due in 2-108 by 11AM on Thursday 2 December, or by email before 5PM on the same day. This is the last homework for this course!
(1) Let E be a set and let Y be a metric space. Consider all the bounded maps $f: E \longrightarrow Y$ - so for each such map there is a constant M and a point $y \in Y$ with the property that $d_{Y}(f(e), y) \leq M$ for all $e \in E$. Let $\mathcal{B}(E ; Y)$ be the set of these bounded maps and define for each $f, g \in \mathcal{B}(E ; Y)$

$$
d(f, g)=\sup _{e \in E} d_{Y}(f(e), g(e)) .
$$

Show that this is a metric on $\mathcal{B}(E ; Y)$ and that if Y is complete so is $\mathcal{B}(E ; Y)$.
(2) Show that if X is a metric space and Y is a (complete if you want because of the previous question but it is not needed here) metric space then the set $\mathcal{C}(X ; Y)$ of continuous and bounded maps $f: X \longrightarrow Y$ is a closed subset of $\mathcal{B}(X ; Y)$ defined in the previous question.
(3) Rudin Chap 7 No 24. Let X be a metric space with metric d and suppose $a \in X$ is a fixed point. Assign to each $p \in X$ the function $f_{p}: X \longrightarrow \mathbb{R}$ where $f_{p}(x)=d(p, x)-d(a, x)$ for each $x \in X$. Show that $f_{p} \in \mathcal{C}(X)$, i.e. it is a continuous bounded function, and so this construction defines a map $\Phi: X \longrightarrow \mathcal{C}(X)$. Prove that

$$
\sup _{x \in X}\left|f_{p}(x)-f_{q}(x)\right|=d(p, q) \forall p, q \in X
$$

Hence conclude that Φ is an isometry (a map between metric spaces preserving the distance) which maps $X 1$ 1-1 onto a subset of $\mathcal{C}(X)$. Since the latter is complete deduce that the closure of the range of Φ is a metric completion of X - is a complete metric space which has X (represented as the range of $\Phi)$ as a dense subset and which has a distance which restricts to the distance on X.
(4) Let $f_{n}:[0,1] \longrightarrow[0, \infty)$ be a sequence of continuous functions which is pointwise decreasing with $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for each $x \in[0,1]$. Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0$.
(5) Suppose that $f:[0,1] \longrightarrow \mathbb{R}$ is a Riemann integrable function. Show that, as a consequence of the Stone-Weierstrass theorem, there is a sequence of polynomials p_{n} such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f(x)-p_{n}(x)\right| d x=0
$$

Hint: Use a problem from earlier homework about Riemann integrable functions.

