
18.100B/C, SECTION 1, MELROSE

SOLUTIONS TO FINAL EXAM

Median seems to be around 142. Grades are modified by 100C component (if
relevant) and HW/Tests.

-

6

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

5

10

C B- B B+ A- A A+

Problem 1

Let K ⊂ R2 be a closed and bounded set and let f : [0, 1] × K −→ C be a
continuous function on this subset of R3 (all with respect to the Euclidean metric).
Show that the set of functions {gs}s∈[0,1] where

gs(x) = f(s, x)

is equicontinuous on K.
Solution: The subset [0, 1] × K ⊂ R3 is compact, as the product of two com-

pact sets. To see this consider a sequence in [0, 1] ×K which consists of a pair of
sequences, one in [0, 1] and the other in K. The first has a convergent subsequence
with limit in [0, 1] by the Heine-Borel theorem and taking the corresponding subse-
quence of the second this has in turn a convergent subsequence by the compactness
of K and a result to this effect from Rudin. Or recall that we proved that the
product of two compact sets is compact, or use Heine-Borel more directly. Since
f is continuous on this compact metric space, by a result in Rudin, it is uniformly
continuous. Thus, given ε > 0 there exists δ > 0 such that

|s1 − s2|2 + |y − y′|2 < δ2 =⇒ |f(s1, y)− f(s2, y
′)| < ε.

Taking s1−s2 this is precisely what is needed to show that the collection of functions
gs is equicontinuous.

Comments. Quite a few people got to uniform continuity and then did not see
that it gave equicontinuity of the gs. Some people tried to bluff their way through.
Some people used the continuity of the map [0, 1] 3 s 7−→ gs ∈ C(K), Heine-Borel
and Ascoli-Arzelà. This works if you prove continuity of the map, which is pretty
much precisely the equicontinuity we want but okay.

Problem 2

Show that in any metric space, the closure of a connected set is connected.
Solution: See Test 1.
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Problem 3

If f : [0, 2] −→ R is a continuous function, state a theorem which shows that
F (x) =

∫ x

0
f(s)ds is differentiable on [0, 2] (or prove it directly) and show that there

exists c ∈ (0, 2) such that
∫ 2

0
f(x)dx = 2f(c).

Solution: Sorry about the typo. The Fundamental Theorem of Calculus states
that the integral of a Riemann integrable function F (x) =

∫ x

0
f(s)ds is differentiable

at each point of continuity of f with derivative there F ′(x) = f(x). Since f is
continuous everywhere on [0, 2], F is differentiable on [0, 2] and by the Mean Value
Theorem there exists c ∈ (0, 2) such that

F (2)− F (0) =

∫ 2

0

f(s)ds = f(c)(2− 0) = 2f(c).

Problem 4

Let f : R −→ R be twice differentiable and suppose that 0 is a local minimum of
f, i.e. for some ε > 0 f(x) ≥ f(0) for all x ∈ (−ε, ε). Show that if f ′′(0) > 0 then 0
is a strict local minimum in the sense that there exists ε > 0 such that f(x) > f(0)
for 0 6= x ∈ (−ε, ε).

Solution: By the definition of (second) derivative, f ′′(0) is the limit as x → 0
of the difference quotient (f ′(x)− f ′(0))/x. Since 0 is given to be an interior local
minimum of f, f ′(0) = 0 by a Theorem stating precisely this in Rudin’s book. Thus
if f ′′(0) => 0 then f ′(x)/x > 0 in (−δ, δ) \ {0} for some δ > 0. Now, applying the
mean value theorem if x ∈ (−δ, 0),

f(0)− f(x) = xf ′(c) < 0

and similarly, if x ∈ (0, δ) then f(x)−f(0) = xf ′(c) > 0 for some c ∈ (0, δ). Finally
then f(x) > f(0) so f has a strict local minimum at 0.

There are probably other ways to see this.

Problem 5

Let gn : [0, 1] −→ R be a sequence of differentiable functions such that the
sequence g′n : [0, 1] −→ R is uniformly bounded.

(1) Show that there is a sequence of constants cn such that sequence of functions
hn(x) = gn(x)− cn has a uniformly convergent subsequence on [0, 1].

(2) Show that if
∫ 1

0
gndx is a bounded sequence in R then gn has a uniformly

convergent subsequence.

Solution: Note that I made a mistake in the first version of the proof by not
reading the question and forgetting that I had made it harder by only supposing
that the sequence of derivatives is uniformly bounded, not uniformly convergent!
So maybe I concede that this was a little too tricky. Oh well, here is an answer to
the actual question.

(1) Set cn = gn(0) so then hn(0) = 0 for all n. Since h′n(x) = g′n(x) this se-
quence is unformly bounded and hence by the mean value theorem |hn(x)| =
|h′n(tn)||x| for some tn ∈ (0, x) is uniformly bounded. It follows from Ascoli-
Arzelà that hn has a uniformly convergent
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(2) The gn are continuous, since they are differentiable, so the integral exists.
Moroever, with hn as in the previous part,∫ 1

0

hndx =

∫ 1

0

gndx− cn.

Thus, if the integrals of the gn are bounded then the cn must be bounded,
since we know that on the subsequence hni converges uniformly so the
corresponding subsequence of integrals on the left is convergent, by a result
to this effect in Rudin. Thus, {cn)i} is bounded so it has a convergent
subsequence, by the Heine-Borel Theorem (maybe Weierstrass in fact). The
corresonding subsquence of gn therefore converges uniformly, since it is
hni

+ cn′
i
.

Problem 6

Show that the series of functions
∞∑

n=1

xn sin(nx)

n3 + n2 + 1

converges uniformly on [−1, 1] and defines a continuously differentiable function on
[−1, 1].

Solution: Since | sin y| ≤ 1 the terms of the sequence are bounded by (n3 + n2 +
1)−1 for |x| ≤ 1. This gives a convergent series, so the given series is uniformly
convergent on [−1, 1]. Differentiating term by term, gives a new series with nth
term

nxn−1 sin(nx) + nxn cos(nx)

n3 + n2 + 1

This is bounded in absolute value by n(n3+n2+1)−1 which again gives a convergent
series, so the series of derivatives is also uniformly convergent. It follows from a
result in Rudin’s book that the limit is differentiable on [−1, ] and that the derivative
is the uniform limit of this series of continuous functions, hence is also continuous.

Problem 7

(1) Explain carefully why the Riemann-Stieltjes integral∫ 1

−1
x2 exp(x3)dα

exists for any increasing function α : [−1, 1] −→ R.
(2) Evaluate this integral when

α =

{
x x < 0

x+ 1 x ≥ 0.

This one surely was a gift.
Solution: The function x2 exp(x3) is continuous since the polynomials x2 and

x3 are continuous, as is exp so by composition and product theorem continuity
follows. Since α is increasing, the Riemann-Stieltjes integrability follows from the
theorem in Rudin that any continuous function on a compact interval is integrable.
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By a decomposition result in Rudin if we write α = α1 + α2, where here α2 is the
Heaviside function with jump at 0 and α1(x) = x then∫ 1

−1
fdα =

∫ 1

−1
fdα1 +

∫ 1

−1
fdα2

for any continuous function. The first integral is the Riemann integral and since
x2 exp(x3) = 1

3
d
dx exp(x3) this evaluates to 1

3 (e−e−1). On the other hand the value
of f at 0 is zero, so this in fact is the value of the integral.

Problem 8

Letf : X −→ R be a continuous function on a compact metric space, X. If {xn}
is a sequence in X show that {f(xn)} has a convergent subsequence with limit in
f(X).

If you didn’t get this one you were not paying attention.
Solution: if {xn} is a sequenc in X then {f(xn)} is a sequence in f(X) which

is compact, as the continuous image of a compact set. Thus it has a convergent
subsequence with limit in f(X) as this is a property of any sequence in a compact
set.

Problem 9

If an > 0, n ∈ N, is a sequence of real numbers such that the sequence bN =
N∑

n=1
an is a bounded, show that

∑
n
a

1
2
na

1
2
n+1 converges.

Solution: Since 2anan+1 ≤ a2n + a2n+1 taking square-roots shows that the in-
creasins sequence bN is bounded above by a multiple of the limit if the series, so is
itself convergent. Hence the series converges.

Problem 10

Show that a non-empty open subset of (−1, 1) can be written as an at most
countable union of open intervals (an, bn) where (an, bn) ∩ (ak, bk) = ∅ if k 6= n.

Solution: Let O be the open subset. Consider the rational points in O. For each
such q let Oq =

⋃
(a, b), where q ∈ (a, b) ⊂ O. Each Oq is open, being the union

of open sets, and is non-empty since O being open contains an interval around
q. Set a(q) = inf Oq and b(q) = supOq, which exist since Oq ⊂ (−1, 1). Then
in fact Oq = (a(q), b(q)) is an interval. Indeed, a(q) /∈ Oq since otherwise the
complement could not be closed, and similarly b(q) /∈ O)q. However, given ε > 0
there exists a < a(q) + ε with (a, q] ⊂ Oq since a(q) is the limit of lower points of
intervals containing q in O. Similarly [q, b) ⊂ Oq for some b > b(q)− ε. Thus in fact
Oq = (a(q), b(q)) as claimed. Now, Oq = Oq′ for any other q′ ∈ Oq ∩Q, since Oq is
an interval containing q′ so Oq ⊂ Oq′ but then Oq′ is an interval containing q (in
O of course) so Oq′ ⊂ Oq and they are equal. It follows that any two of the Oq’s
for rational points in O are either equal or disjoint. Now, enumerating the rational
points in O and dropping repeated intervals gives the intervals (an, bn) which form
a decomposition of O as an at most countable union of open intervals, since any
point of O is in an interval (a, b) ⊂ O and hence in an (an, bn).


