18.100B/C, SECTION 1, MELROSE SOLUTIONS TO FINAL EXAM

Median seems to be around 142. Grades are modified by 100C component (if relevant) and HW/Tests.

Problem 1
Let $K \subset \mathbb{R}^{2}$ be a closed and bounded set and let $f:[0,1] \times K \longrightarrow \mathbb{C}$ be a continuous function on this subset of \mathbb{R}^{3} (all with respect to the Euclidean metric). Show that the set of functions $\left\{g_{s}\right\}_{s \in[0,1]}$ where

$$
g_{s}(x)=f(s, x)
$$

is equicontinuous on K.
Solution: The subset $[0,1] \times K \subset \mathbb{R}^{3}$ is compact, as the product of two compact sets. To see this consider a sequence in $[0,1] \times K$ which consists of a pair of sequences, one in $[0,1]$ and the other in K. The first has a convergent subsequence with limit in $[0,1]$ by the Heine-Borel theorem and taking the corresponding subsequence of the second this has in turn a convergent subsequence by the compactness of K and a result to this effect from Rudin. Or recall that we proved that the product of two compact sets is compact, or use Heine-Borel more directly. Since f is continuous on this compact metric space, by a result in Rudin, it is uniformly continuous. Thus, given $\epsilon>0$ there exists $\delta>0$ such that

$$
\left|s_{1}-s_{2}\right|^{2}+\left|y-y^{\prime}\right|^{2}<\delta^{2} \Longrightarrow\left|f\left(s_{1}, y\right)-f\left(s_{2}, y^{\prime}\right)\right|<\epsilon
$$

Taking $s_{1}-s_{2}$ this is precisely what is needed to show that the collection of functions g_{s} is equicontinuous.

Comments. Quite a few people got to uniform continuity and then did not see that it gave equicontinuity of the g_{s}. Some people tried to bluff their way through. Some people used the continuity of the map $[0,1] \ni s \longmapsto g_{s} \in \mathcal{C}(K)$, Heine-Borel and Ascoli-Arzelà. This works if you prove continuity of the map, which is pretty much precisely the equicontinuity we want but okay.

Problem 2

Show that in any metric space, the closure of a connected set is connected. Solution: See Test 1.

Problem 3

If $f:[0,2] \longrightarrow \mathbb{R}$ is a continuous function, state a theorem which shows that $F(x)=\int_{0}^{x} f(s) d s$ is differentiable on $[0,2]$ (or prove it directly) and show that there exists $c \in(0,2)$ such that $\int_{0}^{2} f(x) d x=2 f(c)$.

Solution: Sorry about the typo. The Fundamental Theorem of Calculus states that the integral of a Riemann integrable function $F(x)=\int_{0}^{x} f(s) d s$ is differentiable at each point of continuity of f with derivative there $F^{\prime}(x)=f(x)$. Since f is continuous everywhere on $[0,2], F$ is differentiable on $[0,2]$ and by the Mean Value Theorem there exists $c \in(0,2)$ such that

$$
F(2)-F(0)=\int_{0}^{2} f(s) d s=f(c)(2-0)=2 f(c)
$$

Problem 4

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be twice differentiable and suppose that 0 is a local minimum of f, i.e. for some $\epsilon>0 f(x) \geq f(0)$ for all $x \in(-\epsilon, \epsilon)$. Show that if $f^{\prime \prime}(0)>0$ then 0 is a strict local minimum in the sense that there exists $\epsilon>0$ such that $f(x)>f(0)$ for $0 \neq x \in(-\epsilon, \epsilon)$.

Solution: By the definition of (second) derivative, $f^{\prime \prime}(0)$ is the limit as $x \rightarrow 0$ of the difference quotient $\left(f^{\prime}(x)-f^{\prime}(0)\right) / x$. Since 0 is given to be an interior local minimum of $f, f^{\prime}(0)=0$ by a Theorem stating precisely this in Rudin's book. Thus if $f^{\prime \prime}(0)=>0$ then $f^{\prime}(x) / x>0$ in $(-\delta, \delta) \backslash\{0\}$ for some $\delta>0$. Now, applying the mean value theorem if $x \in(-\delta, 0)$,

$$
f(0)-f(x)=x f^{\prime}(c)<0
$$

and similarly, if $x \in(0, \delta)$ then $f(x)-f(0)=x f^{\prime}(c)>0$ for some $c \in(0, \delta)$. Finally then $f(x)>f(0)$ so f has a strict local minimum at 0 .

There are probably other ways to see this.

Problem 5

Let $g_{n}:[0,1] \longrightarrow \mathbb{R}$ be a sequence of differentiable functions such that the sequence $g_{n}^{\prime}:[0,1] \longrightarrow \mathbb{R}$ is uniformly bounded.
(1) Show that there is a sequence of constants c_{n} such that sequence of functions $h_{n}(x)=g_{n}(x)-c_{n}$ has a uniformly convergent subsequence on $[0,1]$.
(2) Show that if $\int_{0}^{1} g_{n} d x$ is a bounded sequence in \mathbb{R} then g_{n} has a uniformly convergent subsequence.
Solution: Note that I made a mistake in the first version of the proof by not reading the question and forgetting that I had made it harder by only supposing that the sequence of derivatives is uniformly bounded, not uniformly convergent! So maybe I concede that this was a little too tricky. Oh well, here is an answer to the actual question.
(1) Set $c_{n}=g_{n}(0)$ so then $h_{n}(0)=0$ for all n. Since $h_{n}^{\prime}(x)=g_{n}^{\prime}(x)$ this sequence is unformly bounded and hence by the mean value theorem $\left|h_{n}(x)\right|=$ $\left|h_{n}^{\prime}\left(t_{n}\right)\right||x|$ for some $t_{n} \in(0, x)$ is uniformly bounded. It follows from AscoliArzelà that h_{n} has a uniformly convergent
(2) The g_{n} are continuous, since they are differentiable, so the integral exists. Moroever, with h_{n} as in the previous part,

$$
\int_{0}^{1} h_{n} d x=\int_{0}^{1} g_{n} d x-c_{n} .
$$

Thus, if the integrals of the g_{n} are bounded then the c_{n} must be bounded, since we know that on the subsequence $h_{n_{i}}$ converges uniformly so the corresponding subsequence of integrals on the left is convergent, by a result to this effect in Rudin. Thus, $\left\{c_{n) i}\right\}$ is bounded so it has a convergent subsequence, by the Heine-Borel Theorem (maybe Weierstrass in fact). The corresonding subsquence of g_{n} therefore converges uniformly, since it is $h_{n_{i}}+c_{n_{i}^{\prime}}$.

Problem 6

Show that the series of functions

$$
\sum_{n=1}^{\infty} \frac{x^{n} \sin (n x)}{n^{3}+n^{2}+1}
$$

converges uniformly on $[-1,1]$ and defines a continuously differentiable function on $[-1,1]$.

Solution: Since $|\sin y| \leq 1$ the terms of the sequence are bounded by $\left(n^{3}+n^{2}+\right.$ $1)^{-1}$ for $|x| \leq 1$. This gives a convergent series, so the given series is uniformly convergent on $[-1,1]$. Differentiating term by term, gives a new series with nth term

$$
\frac{n x^{n-1} \sin (n x)+n x^{n} \cos (n x)}{n^{3}+n^{2}+1}
$$

This is bounded in absolute value by $n\left(n^{3}+n^{2}+1\right)^{-1}$ which again gives a convergent series, so the series of derivatives is also uniformly convergent. It follows from a result in Rudin's book that the limit is differentiable on $[-1$,$] and that the derivative$ is the uniform limit of this series of continuous functions, hence is also continuous.

Problem 7

(1) Explain carefully why the Riemann-Stieltjes integral

$$
\int_{-1}^{1} x^{2} \exp \left(x^{3}\right) d \alpha
$$

exists for any increasing function $\alpha:[-1,1] \longrightarrow \mathbb{R}$.
(2) Evaluate this integral when

$$
\alpha= \begin{cases}x & x<0 \\ x+1 & x \geq 0\end{cases}
$$

This one surely was a gift.
Solution: The function $x^{2} \exp \left(x^{3}\right)$ is continuous since the polynomials x^{2} and x^{3} are continuous, as is exp so by composition and product theorem continuity follows. Since α is increasing, the Riemann-Stieltjes integrability follows from the theorem in Rudin that any continuous function on a compact interval is integrable.

By a decomposition result in Rudin if we write $\alpha=\alpha_{1}+\alpha_{2}$, where here α_{2} is the Heaviside function with jump at 0 and $\alpha_{1}(x)=x$ then

$$
\int_{-1}^{1} f d \alpha=\int_{-1}^{1} f d \alpha_{1}+\int_{-1}^{1} f d \alpha_{2}
$$

for any continuous function. The first integral is the Riemann integral and since $x^{2} \exp \left(x^{3}\right)=\frac{1}{3} \frac{d}{d x} \exp \left(x^{3}\right)$ this evaluates to $\frac{1}{3}\left(e-e^{-1}\right)$. On the other hand the value of f at 0 is zero, so this in fact is the value of the integral.

Problem 8

Let $f: X \longrightarrow \mathbb{R}$ be a continuous function on a compact metric space, X. If $\left\{x_{n}\right\}$ is a sequence in X show that $\left\{f\left(x_{n}\right)\right\}$ has a convergent subsequence with limit in $f(X)$.

If you didn't get this one you were not paying attention.
Solution: if $\left\{x_{n}\right\}$ is a sequenc in X then $\left\{f\left(x_{n}\right)\right\}$ is a sequence in $f(X)$ which is compact, as the continuous image of a compact set. Thus it has a convergent subsequence with limit in $f(X)$ as this is a property of any sequence in a compact set.

Problem 9

If $a_{n}>0, n \in \mathbb{N}$, is a sequence of real numbers such that the sequence $b_{N}=$ $\sum_{n=1}^{N} a_{n}$ is a bounded, show that $\sum_{n} a_{n}^{\frac{1}{2}} a_{n+1}^{\frac{1}{2}}$ converges.

Solution: Since $2 a_{n} a_{n+1} \leq a_{n}^{2}+a_{n+1}^{2}$ taking square-roots shows that the increasins sequence b_{N} is bounded above by a multiple of the limit if the series, so is itself convergent. Hence the series converges.

Problem 10

Show that a non-empty open subset of $(-1,1)$ can be written as an at most countable union of open intervals $\left(a_{n}, b_{n}\right)$ where $\left(a_{n}, b_{n}\right) \cap\left(a_{k}, b_{k}\right)=\emptyset$ if $k \neq n$.

Solution: Let O be the open subset. Consider the rational points in O. For each such q let $O_{q}=\bigcup(a, b)$, where $q \in(a, b) \subset O$. Each O_{q} is open, being the union of open sets, and is non-empty since O being open contains an interval around q. Set $a(q)=\inf O_{q}$ and $b(q)=\sup O_{q}$, which exist since $O_{q} \subset(-1,1)$. Then in fact $O_{q}=(a(q), b(q))$ is an interval. Indeed, $a(q) \notin O_{q}$ since otherwise the complement could not be closed, and similarly $b(q) \notin O) q$. However, given $\epsilon>0$ there exists $a<a(q)+\epsilon$ with $(a, q] \subset O_{q}$ since $a(q)$ is the limit of lower points of intervals containing q in O. Similarly $[q, b) \subset O_{q}$ for some $b>b(q)-\epsilon$. Thus in fact $O_{q}=(a(q), b(q))$ as claimed. Now, $O_{q}=O_{q^{\prime}}$ for any other $q^{\prime} \in O_{q} \cap \mathbb{Q}$, since O_{q} is an interval containing q^{\prime} so $O_{q} \subset O_{q^{\prime}}$ but then $O_{q^{\prime}}$ is an interval containing q (in O of course) so $O_{q^{\prime}} \subset O_{q}$ and they are equal. It follows that any two of the O_{q} 's for rational points in O are either equal or disjoint. Now, enumerating the rational points in O and dropping repeated intervals gives the intervals $\left(a_{n}, b_{n}\right)$ which form a decomposition of O as an at most countable union of open intervals, since any point of O is in an interval $(a, b) \subset O$ and hence in an $\left(a_{n}, b_{n}\right)$.

