18.100B/C, FALL 2009

 FINAL EXAM, SOLUTIONSThese solutions are about as short as I think you should expect to get away with and still get full marks! I hope this wasn't all too painful, have a pleasant Winter break. RBM.

Problem 1

Show that the set $\left\{z \in \mathbb{C} ; z=\exp \left(i t^{24}+23 t^{7}\right)\right.$ for some $\left.t \in \mathbb{R}\right\}$ is connected.
Solution. The polynomial $p(t)=i t^{24}+23 t^{7}$ is continuous on the real line. The function \exp is continuous from \mathbb{C} to \mathbb{C} and hence the composite $\exp (p(t))$ is continuous on \mathbb{R}. The real line is connected and the continuous image of a connected set is connected, hence the given set is connected.

Problem 2

Explain why there is no continuous map from the disk $\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2} \leq 1\right\}$ onto the interval $(0,1) \in \mathbb{R}$.

Solution: By the Heine-Borel theorem the disc $\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2} \leq 1\right\}$ is compact, being closed and bounded. Hence its image under a continuous map must be compact but $(0,1) \subset \mathbb{R}$ is not compact, since it is not closed, so there cannot be a continuous map from the closed disc onto the open interval.

Problem 3

Suppose that a number s is the upper limit (limit supremum) of a subsequence of a sequence $\left\{x_{n}\right\}$ in the reals. Show that s is the limit of some subsequence of $\left\{x_{n}\right\}$.

Solution: By assumption there exists a subsequence, which we can denote y_{k}, of x_{n} so that $s=\lim _{n \rightarrow \infty} t_{n}, t_{n}=\sup _{n \geq k} y_{k}$. By the definition of sup there is a subsequence $y_{p(k)}$ such that $\left.y_{p(k)}\right)>t_{k}-1 / k$. Since $t_{k} \geq y_{p_{k}}>t_{k}-1 / k$ it follows that $y_{n(k)} \rightarrow s$ as $k \rightarrow \infty$. Since $y_{n(k)}$ is a subsequence of y_{k} it is a subsequence of the original sequence x_{n}.

Problem 4

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be twice differentiable and suppose that 0 is a local maximum of f, i.e. for some $\epsilon>0, f(x) \leq f(0)$ for all $x \in(-\epsilon, \epsilon)$. Show that $f^{\prime \prime}(0) \leq 0$.

Solution. Since 0 is a local maximum of f which is differentiable, it follows that $f^{\prime}(0)=0$ by a theorem in Rudin. For $0<x<\epsilon$ the mean value theorem shows the existence of y with $0<y<x$ such that

$$
\begin{equation*}
f(x)-f(0)=f^{\prime}(y)(x-0) \leq 0, \tag{1}
\end{equation*}
$$

so $f^{\prime}(y) \leq 0$. Thus the difference quotient for $f^{\prime \prime}, \frac{f^{\prime}(y)-f^{\prime}(0)}{y-0}=f^{\prime}(y) / y$ is nonpositive for some small positive y, arbitrary small. As the limit as $y \downarrow 0$ it follows that $f^{\prime \prime}(0) \leq 0$.

Problem 5

Let $\left\{\phi_{n}\right\}$ be a uniformly bounded sequence of continuous functions on $[0,1]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} \phi_{n}(x) d x=0 \tag{2}
\end{equation*}
$$

for every $k=0,1,2, \ldots$ Show that for any continuous function $f:[0,1] \rightarrow \mathbb{R}$, the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \phi_{n}(x) d x
$$

exists.
Solution: Since any polynomial is a finite sum of products of monomials x^{k} and constants it follows from (2) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} p(x) \phi_{n}(x) d x=\sum_{k=1}^{N} c_{k} \lim _{n \rightarrow \infty} \int_{0}^{1} x^{k} \phi_{n}(x) d x=0 \tag{3}
\end{equation*}
$$

for any polynomial p.
The uniform boundedness means that there exists a constant M such that $\left|\phi_{n}(x)\right| \leq M$ for all n and for all $x \in[0,1]$. Given a continuous function $f:[0,1] \longrightarrow$ \mathbb{C}, the Stone-Weierstrass Theorem shows that there is a sequence of polynomials $p_{l}(x)$ converging uniformly to f on $[0,1]$. Thus, given $\epsilon>0$, there is a polynomial p such that
(4) $|p(x)-f(x)|<\epsilon / 2(M+1) \Longrightarrow\left|\int_{0}^{1} f(x) \phi_{n}(x) d x-\int_{0}^{1} p(x) \phi_{n}(x) d x\right|<\epsilon / 2$.

Now, since p is a polynomial, (3) shows the existence of N such that

$$
\begin{equation*}
n>N \Longrightarrow\left|\int_{0}^{1} p(x) \phi_{n}(x) d x\right|<\epsilon / 2 \Longrightarrow\left|\int_{0}^{1} f(x) \phi_{n}(x) d x\right|<\epsilon \tag{5}
\end{equation*}
$$

Thus $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) \phi_{n}(x) d x=0$ for any continuous function f on $[0,1]$.

Problem 6

Using standard properties of the cosine function show that the series

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{5 / 2}} \cos (n x)
$$

defines a continuously differentiable function on the real line.
Solution: The terms in the series are all differentiable with derivatives

$$
\begin{equation*}
-\frac{1}{n^{3 / 2}} \sin (n x) \tag{6}
\end{equation*}
$$

Since $|\sin (n x)| \leq 1$ this series is absolutely and uniformly convergent on \mathbb{R}, by the comparison test with $\sum_{n} n^{-3 / 2}$. The same applies to the original series so, by a theorem in Rudin, the sum f is differentiable on \mathbb{R} and the derivative is the sum of a uniformly convergent series of continuous functions, hence continuous. Thus f is continuously differentiable as a function on \mathbb{R}.

Problem 7

(1) Explain why the Riemann-Stieltjes integral

$$
\begin{equation*}
\int_{-1}^{1} \exp \left(x^{2} / 3\right) d \alpha \tag{7}
\end{equation*}
$$

exists for any increasing function $\alpha:[-1,1] \longrightarrow \mathbb{R}$.
(2) Evaluate this integral when

$$
\alpha= \begin{cases}0 & x<0 \\ 1 & x \geq 0 .\end{cases}
$$

Solution: By a theorem in Rudin any continuous function is Riemann-Stieltjes integrable with respect to any increasing function α. Since $\exp \left(x^{2} / 3\right)$ (or was it supposed to be $\exp \left(x^{\frac{2}{3}}\right)$?) is continuous, as the composite of continuous functions, the integral (7) exists.

To compute it, consider the partition with two interior division points at $-\delta$ and δ, where $\delta>0$ is small. The upper and lower Riemann-Stieltjes sums are then

$$
\begin{equation*}
\inf _{[-\delta, \delta]} \exp \left(x^{2} / 3\right)(\alpha(\delta)-\alpha(-\delta)) \text { and } \sup _{[-\delta, \delta]} \exp \left(x^{2} / 3\right)(\alpha(\delta)-\alpha(-\delta)) \tag{8}
\end{equation*}
$$

As $\delta \rightarrow 0$ these both approach 1 which must therefore be the value of the integral

$$
\begin{equation*}
\int_{-1}^{1} \exp \left(x^{2} / 3\right) d \alpha=1 \tag{9}
\end{equation*}
$$

[Or by quoting some other result from Rudin.]

