18.100B/C, FALL 2009 FINAL EXAM, SOLUTIONS

These solutions are about as short as I think you should expect to get away with and still get full marks! I hope this wasn't all too painful, have a pleasant Winter break. RBM.

Problem 1

Show that the set $\{z \in \mathbb{C}; z = \exp(it^{24} + 23t^7) \text{ for some } t \in \mathbb{R}\}\$ is connected. Solution. The polynomial $p(t) = it^{24} + 23t^7$ is continuous on the real line. The function exp is continuous from \mathbb{C} to \mathbb{C} and hence the composite $\exp(p(t))$ is continuous on \mathbb{R} . The real line is connected and the continuous image of a connected set is connected, hence the given set is connected.

Problem 2

Explain why there is no continuous map from the disk $\{(x, y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$ onto the interval $(0, 1) \in \mathbb{R}$.

Solution: By the Heine-Borel theorem the disc $\{(x, y) \in \mathbb{R}^2; x^2 + y^2 \leq 1\}$ is compact, being closed and bounded. Hence its image under a continuous map must be compact but $(0, 1) \subset \mathbb{R}$ is not compact, since it is not closed, so there cannot be a continuous map from the closed disc onto the open interval.

Problem 3

Suppose that a number s is the upper limit (limit supremum) of a subsequence of a sequence $\{x_n\}$ in the reals. Show that s is the limit of some subsequence of $\{x_n\}$.

Solution: By assumption there exists a subsequence, which we can denote y_k , of x_n so that $s = \lim_{n \to \infty} t_n$, $t_n = \sup_{n \ge k} y_k$. By the definition of sup there is a subsequence $y_{p(k)}$ such that $y_{p(k)} > t_k - 1/k$. Since $t_k \ge y_{p_k} > t_k - 1/k$ it follows that $y_{n(k)} \to s$ as $k \to \infty$. Since $y_{n(k)}$ is a subsequence of y_k it is a subsequence of the original sequence x_n .

Problem 4

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be twice differentiable and suppose that 0 is a local maximum of f, i.e. for some $\epsilon > 0$, $f(x) \le f(0)$ for all $x \in (-\epsilon, \epsilon)$. Show that $f''(0) \le 0$.

Solution. Since 0 is a local maximum of f which is differentiable, it follows that f'(0) = 0 by a theorem in Rudin. For $0 < x < \epsilon$ the mean value theorem shows the existence of y with 0 < y < x such that

(1)
$$f(x) - f(0) = f'(y)(x - 0) \le 0,$$

so $f'(y) \leq 0$. Thus the difference quotient for f'', $\frac{f'(y)-f'(0)}{y-0} = f'(y)/y$ is non-positive for some small positive y, arbitrary small. As the limit as $y \downarrow 0$ it follows that $f''(0) \leq 0$.

Problem 5

Let $\{\phi_n\}$ be a uniformly bounded sequence of continuous functions on [0, 1] such that

(2)
$$\lim_{n \to \infty} \int_0^1 x^k \phi_n(x) dx = 0$$

for every k = 0, 1, 2, ... Show that for any continuous function $f : [0, 1] \to \mathbb{R}$, the limit

$$\lim_{n \to \infty} \int_0^1 f(x)\phi_n(x)dx$$

exists.

Solution: Since any polynomial is a finite sum of products of monomials x^k and constants it follows from (2) that

(3)
$$\lim_{n \to \infty} \int_0^1 p(x)\phi_n(x)dx = \sum_{k=1}^N c_k \lim_{n \to \infty} \int_0^1 x^k \phi_n(x)dx = 0$$

for any polynomial p.

The uniform boundedness means that there exists a constant M such that $|\phi_n(x)| \leq M$ for all n and for all $x \in [0, 1]$. Given a continuous function $f : [0, 1] \longrightarrow \mathbb{C}$, the Stone-Weierstrass Theorem shows that there is a sequence of polynomials $p_l(x)$ converging uniformly to f on [0, 1]. Thus, given $\epsilon > 0$, there is a polynomial p such that

(4)
$$|p(x) - f(x)| < \epsilon/2(M+1) \Longrightarrow |\int_0^1 f(x)\phi_n(x)dx - \int_0^1 p(x)\phi_n(x)dx| < \epsilon/2.$$

Now, since p is a polynomial, (3) shows the existence of N such that

(5)
$$n > N \Longrightarrow |\int_0^1 p(x)\phi_n(x)dx| < \epsilon/2 \Longrightarrow |\int_0^1 f(x)\phi_n(x)dx| < \epsilon.$$

Thus $\lim_{n\to\infty} \int_0^1 f(x)\phi_n(x)dx = 0$ for any continuous function f on [0,1].

Problem 6

Using standard properties of the cosine function show that the series

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^{5/2}} \cos(nx)$$

defines a continuously differentiable function on the real line.

Solution: The terms in the series are all differentiable with derivatives

$$(6) \qquad \qquad -\frac{1}{n^{3/2}}\sin(nx)$$

Since $|\sin(nx)| \leq 1$ this series is absolutely and uniformly convergent on \mathbb{R} , by the comparison test with $\sum_{n} n^{-3/2}$. The same applies to the original series so, by a theorem in Rudin, the sum f is differentiable on \mathbb{R} and the derivative is the sum of a uniformly convergent series of continuous functions, hence continuous. Thus f is continuously differentiable as a function on \mathbb{R} .

Problem 7

(1) Explain why the Riemann-Stieltjes integral

(7)
$$\int_{-1}^{1} \exp(x^2/3) d\alpha$$

exists for any increasing function $\alpha : [-1, 1] \longrightarrow \mathbb{R}$.

(2) Evaluate this integral when

$$\alpha = \begin{cases} 0 & x < 0\\ 1 & x \ge 0 \end{cases}$$

Solution: By a theorem in Rudin any continuous function is Riemann-Stieltjes integrable with respect to any increasing function α . Since $\exp(x^2/3)$ (or was it supposed to be $\exp(x^{\frac{2}{3}})$?) is continuous, as the composite of continuous functions, the integral (7) exists.

To compute it, consider the partition with two interior division points at $-\delta$ and δ , where $\delta > 0$ is small. The upper and lower Riemann-Stieltjes sums are then

(8)
$$\inf_{[-\delta,\delta]} \exp(x^2/3)(\alpha(\delta) - \alpha(-\delta)) \text{ and } \sup_{[-\delta,\delta]} \exp(x^2/3)(\alpha(\delta) - \alpha(-\delta)).$$

As $\delta \to 0$ these both approach 1 which must therefore be the value of the integral

(9)
$$\int_{-1}^{1} \exp(x^2/3) d\alpha = 1.$$

[Or by quoting some other result from Rudin.]