
18.100B/C, FALL 2009

FINAL EXAM, SOLUTIONS

These solutions are about as short as I think you should expect to get away with
and still get full marks! I hope this wasn’t all too painful, have a pleasant Winter
break. RBM.

Problem 1

Show that the set {z ∈ C; z = exp(it24 + 23t7) for some t ∈ R} is connected.
Solution. The polynomial p(t) = it24 + 23t7 is continuous on the real line.

The function exp is continuous from C to C and hence the composite exp(p(t)) is
continuous on R. The real line is connected and the continuous image of a connected
set is connected, hence the given set is connected.

Problem 2

Explain why there is no continuous map from the disk {(x, y) ∈ R2;x2 +y2 ≤ 1}
onto the interval (0, 1) ∈ R.

Solution: By the Heine-Borel theorem the disc {(x, y) ∈ R2;x2 + y2 ≤ 1} is
compact, being closed and bounded. Hence its image under a continuous map
must be compact but (0, 1) ⊂ R is not compact, since it is not closed, so there
cannot be a continuous map from the closed disc onto the open interval.

Problem 3

Suppose that a number s is the upper limit (limit supremum) of a subsequence
of a sequence {xn} in the reals. Show that s is the limit of some subsequence of
{xn}.

Solution: By assumption there exists a subsequence, which we can denote yk,
of xn so that s = limn→∞ tn, tn = supn≥k yk. By the definition of sup there is a
subsequence yp(k) such that yp(k)) > tk − 1/k. Since tk ≥ ypk > tk − 1/k it follows
that yn(k) → s as k →∞. Since yn(k) is a subsequence of yk it is a subsequence of
the original sequence xn.

Problem 4

Let f : R −→ R be twice differentiable and suppose that 0 is a local maximum
of f, i.e. for some ε > 0, f(x) ≤ f(0) for all x ∈ (−ε, ε). Show that f ′′(0) ≤ 0.

Solution. Since 0 is a local maximum of f which is differentiable, it follows that
f ′(0) = 0 by a theorem in Rudin. For 0 < x < ε the mean value theorem shows the
existence of y with 0 < y < x such that

(1) f(x)− f(0) = f ′(y)(x− 0) ≤ 0,

so f ′(y) ≤ 0. Thus the difference quotient for f ′′, f ′(y)−f ′(0)
y−0 = f ′(y)/y is non-

positive for some small positive y, arbitrary small. As the limit as y ↓ 0 it follows
that f ′′(0) ≤ 0.
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Problem 5

Let {φn} be a uniformly bounded sequence of continuous functions on [0, 1] such
that

(2) lim
n→∞

∫ 1

0

xkφn(x)dx = 0

for every k = 0, 1, 2, . . . . Show that for any continuous function f : [0, 1] → R, the
limit

lim
n→∞

∫ 1

0

f(x)φn(x)dx

exists.
Solution: Since any polynomial is a finite sum of products of monomials xk and

constants it follows from (2) that

(3) lim
n→∞

∫ 1

0

p(x)φn(x)dx =

N∑
k=1

ck lim
n→∞

∫ 1

0

xkφn(x)dx = 0

for any polynomial p.
The uniform boundedness means that there exists a constant M such that

|φn(x)| ≤M for all n and for all x ∈ [0, 1]. Given a continuous function f : [0, 1] −→
C, the Stone-Weierstrass Theorem shows that there is a sequence of polynomials
pl(x) converging uniformly to f on [0, 1]. Thus, given ε > 0, there is a polynomial
p such that

(4) |p(x)− f(x)| < ε/2(M + 1) =⇒ |
∫ 1

0

f(x)φn(x)dx−
∫ 1

0

p(x)φn(x)dx| < ε/2.

Now, since p is a polynomial, (3) shows the existence of N such that

(5) n > N =⇒ |
∫ 1

0

p(x)φn(x)dx| < ε/2 =⇒ |
∫ 1

0

f(x)φn(x)dx| < ε.

Thus limn→∞
∫ 1

0
f(x)φn(x)dx = 0 for any continuous function f on [0, 1].

Problem 6

Using standard properties of the cosine function show that the series

f(x) =

∞∑
n=1

1

n5/2
cos(nx)

defines a continuously differentiable function on the real line.
Solution: The terms in the series are all differentiable with derivatives

(6) − 1

n3/2
sin(nx).

Since | sin(nx)| ≤ 1 this series is absolutely and uniformly convergent on R, by
the comparison test with

∑
n
n−3/2. The same applies to the original series so, by a

theorem in Rudin, the sum f is differentiable on R and the derivative is the sum of
a uniformly convergent series of continuous functions, hence continuous. Thus f is
continuously differentiable as a function on R.
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Problem 7

(1) Explain why the Riemann-Stieltjes integral

(7)

∫ 1

−1
exp(x2/3)dα

exists for any increasing function α : [−1, 1] −→ R.
(2) Evaluate this integral when

α =

{
0 x < 0

1 x ≥ 0.

Solution: By a theorem in Rudin any continuous function is Riemann-Stieltjes
integrable with respect to any increasing function α. Since exp(x2/3) (or was it

supposed to be exp(x
2
3 )?) is continuous, as the composite of continuous functions,

the integral (7) exists.
To compute it, consider the partition with two interior division points at −δ and

δ, where δ > 0 is small. The upper and lower Riemann-Stieltjes sums are then

(8) inf
[−δ,δ]

exp(x2/3)(α(δ)− α(−δ)) and sup
[−δ,δ]

exp(x2/3)(α(δ)− α(−δ)).

As δ → 0 these both approach 1 which must therefore be the value of the integral

(9)

∫ 1

−1
exp(x2/3)dα = 1.

[Or by quoting some other result from Rudin.]


