(1) If $f:[0,1] \longrightarrow \mathbb{R}$ is continuous show that there exists $c \in[0,1]$ such that

$$
\int_{0}^{1} f(x) d x=f(c)
$$

(2) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and bounded, show that there is a point $x \in \mathbb{R}$ such that $f(x)=\pi-x$.
(3) Show that the sum

$$
\sum_{n=0}^{\infty} e^{-n} \cos (n x), x \in \mathbb{R}
$$

converges uniformly on the real line to a function f for which the k th derivative $f^{(k)}$ exists for all k.
(4) Given two continuous functions

$$
f_{0}:[0,1] \longrightarrow \mathbb{R}, g:[0,1] \longrightarrow \mathbb{R}
$$

Define a sequence of functions $f_{n}:[0,1] \longrightarrow \mathbb{R}$ for $n \in \mathbb{N}$ by

$$
f_{n}(x):=\int_{0}^{x} \frac{f_{n-1}(t)}{2}+g(t) d t
$$

Show that $\left\{f_{n}\right\}$ converges uniformly to a differentiable function f which satisfies

$$
f^{\prime}(x)=\frac{f(x)}{2}+g(x)
$$

(Hint: show first that $\sup \left|f_{n+1}(x)-f_{n}(x)\right| \leq \frac{1}{2} \sup \left|f_{n}(x)-f_{n-1}(x)\right|$)
(5) Show that if $\alpha:[-1,1] \longrightarrow \mathbb{R}$ is monotone increasing, and is not continuous, then $\alpha \notin \mathcal{R}(\alpha)$. In other words, show that

$$
\int_{0}^{1} \alpha d \alpha
$$

is not well defined as a Riemann-Stieltjes integral when α is not continuous.
(6) Given n points in the plane, $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{2}$, prove that there exists some point x which minimizes the sum of the distances to $\left\{x_{1}, \ldots, x_{n}\right\}$. In other words,

$$
\sum_{i=1}^{n} d\left(x, x_{i}\right)=\inf _{y \in \mathbb{R}^{2}} \sum_{i=1}^{n} d\left(y, x_{i}\right)
$$

where $d(\cdot, \cdot)$ indicates the usual Euclidean metric on \mathbb{R}^{2}.
(7) Suppose that X is a metric space and $K_{i} \subset X, i \in \mathbb{N}$, are compact subsets such that

$$
X=\bigcup_{i=1}^{\infty} K_{i}
$$

Show that X has a countable dense subset.
(8) Let $u: \mathbb{R} \longrightarrow \mathbb{R}$ be a function which is differentiable at every point and which is periodic of period 1 , that is

$$
u(x+1)=u(x) \forall x \in \mathbb{R} .
$$

Show that there are two points, $x_{1}, x_{2} \in \mathbb{R}$ with $f^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{2}\right)=0$ and $\left|x_{1}-x_{2}\right|<1$.
(9) Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuously differentiable function, meaning it is differentiable and its derivative is continuous on $[0,1]$. Show that there is a sequence of polynomials $\left\{p_{n}\right\}$ such that $p_{n} \longrightarrow f$ uniformly and $p_{n}^{\prime} \longrightarrow f^{\prime}$ uniformly on $[0,1]$.
(10) Show that the series
(1)

$$
\sum_{i=1}^{\infty} \sqrt{n} x^{n}
$$

converges for each $x \in(-1,1)$, diverges for $|x| \geq 1$ and that the limit is a continuous function of $x \in(0,1)$.

