
Since I did not have time to write out complete solutions to this exam (from
2007) I am just giving you very, very strong hints. Sorry about any typos. If you
need more help, ask!

(1) If f : [0, 1] −→ R is continuous show that there exists c ∈ [0, 1] such that∫ 1

0

f(x)dx = f(c).

Hint: By a theorem in Rudin (namely the Fundamental Theorem of
Calculus), the integral of a continuous function is differentiable in the upper

limit, so F (t) =
∫ t

0
f(x)dx is differentiable on [0, 1]. By the Mean Value

Theorem, F (1)− F (0) = F ′(c)(1− 0) for some c ∈ (0, 1).

Or, as Michael suggests: Bounds on the integral give inf f ≤
∫ 1

0
f(x)dx ≤

sup f. Since it is a continuous function on a compact set, inf f and sup f are

in the range of f so by the intermediate value theorem so is
∫ 1

0
f(x)dx =

f(c) for some c ∈ [0, 1].
(2) If f : R −→ R is continuous and bounded, show that there is a point x ∈ R

such that f(x) = π − x.
Hint: The function g(x) = f(x) + x is continuous and by a theorem in

Rudin, the continuous image of a connected set is connected, so I = g(R) ⊂
R is connected. Since f is bounded, say |f(x)| ≤ M Taking x1 = M + π
ensures that there is a point g(x1) = f(x1) + x1 ≥ π in I and taking
x2 = −M + π that there is a point g(x2) ≤ π in I. A theorem in Rudin
states that if p ≤ y ≤ q p, q ∈ I where I ⊂ R is connected then y ∈ I, so
. . . .

(3) Show that the sum

∞∑
n=0

e−ncos(nx), x ∈ R

converges uniformly on the real line to a function f for which the kth
derivative f (k) exists for all k.

Hint: Compute the kth derivative of series term by term. Since sin
and cos are both bounded it follows that each of these series is uniformly
convergetn on the whole real line. Apply a theorem from Ruding that if a
series of differentiable functions converges uniformly (just at one point is
enoug) and the differentiated series also converges then . . . . Now, apply
this repeatedly the successive derivatives.

(4) Given two continuous functions

f0 : [0, 1] −→ R, g : [0, 1] −→ R

Define a sequence of functions fn : [0, 1] −→ R for n ∈ N by

fn(x) :=

∫ x

0

fn−1(t)

2
+ g(t)dt

Show that {fn} converges uniformly to a differentiable function f which
satisfies

f ′(x) =
f(x)

2
+ g(x)

(Hint: show first that sup|fn+1(x)− fn(x)| ≤ 1
2 sup|fn(x)− fn−1(x)|)
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(5) Show that if α : [−1, 1] −→ R is monotone increasing, and is not continuous,
then α /∈ R(α). In other words, show that∫ 1

0

αdα

is not well defined as a Riemann-Stieltjes integral when α is not continuous.
Hint: If a monotone increasing function is not continuous at a point p

then the limit from the right R at p (which exists . . . ) must be strictly
greater than the limit from the left L (which also exists . . . ). Let δ > 0 be
the larger of the differences R− α(p) and α(p)− L. It follows that for any
partition of the interval, the difference

U(P, α, α)− L(P, α, α) ≥ δ2

since this point must be in one intervals – either as an interior or an end-
point. It follows from a criterion for integrability in the book that α is not
Riemann-Stieltjes integrable with respect to α.

(6) Given n points in the plane, {x1, . . . , xn} ⊂ R2, prove that there exists
some point x which minimizes the sum of the distances to {x1, . . . , xn}. In
other words,

n∑
i=1

d(x, xi) = inf
y∈R2

n∑
i=1

d(y, xi)

where d(·, ·) indicates the usual Euclidean metric on R2.
Hint: Let f be the sum of the distances. This is a continuous non-

negative function on R2; let L be its infimum. Then L this is also the
infimum of f over the set |x| ≤ L +

∑n
i=1 |xi| because outside that set

|f(x)| > L (say why exactly). Thus, as the infimum of a continuous function
on a compact set L is attained.

(7) Suppose that X is a metric space and Ki ⊂ X, i ∈ N, are compact subsets
such that

X =

∞⋃
i=1

Ki.

Show that X has a countable dense subset.
Hint: A compact metric space has a countable dense subset. The union

over i of these subsets is countable and dense in X.
(8) Let u : R −→ R be a function which is differentiable at every point and

which is periodic of period 1, that is

u(x+ 1) = u(x) ∀ x ∈ R.

Show that there are two points, x1, x2 ∈ R with f ′(x1) = f ′(x2) = 0 and
|x1 − x2| < 1.

Hint: By periodicity, u(0) = u(1) so the MVT shows the existence of
c ∈ (0, 1) with u′(c)(1 − 0) = u(1) − u(0) = 0. Apply the same argument
again to the points c and c + 1, so there exists d ∈ (c, c + 1) such that
u′(d)(c + 1 − c) = u(c + 1) − u(c) = 0. Since |c − d| < 1 this is what we
want.

(9) Let f : [0, 1] −→ R be a continuously differentiable function, meaning it is
differentiable and its derivative is continuous on [0, 1]. Show that there is a
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sequence of polynomials {pn} such that pn −→ f uniformly and p′n −→ f ′

uniformly on [0, 1].
Hint: Since f ′ : [0, 1] 7−→ R is given to be continuous, there is a sequence

of polynomials qn converging uniformly to f ′ by the Stone-Weierstrass The-
orem. Integrating from 0 set

pn(x) = f(0) +

∫ x

0

qn(s)ds.

This is a sequence of polynomials and certainly pn(0) = f(0) so converges
to f(0). A theorem in Rudin’s book asserts that uniform convergence of
the sequence of derivatives and convergence at one point implies uniform
convergence of the sequence. Another theorem asserts that uniform con-
vergence of a sequence of Riemann(-Stietjes) integable functions implies
convergence of the integrals, so pn → f uniformly (since the sequence con-
verges uniformly and the limit is f).

(10) Show that the series

(1)

∞∑
i=1

√
nxn

converges for each x ∈ (−1, 1), diverges for |x| ≥ 1 and that the limit is a
continuous function of x ∈ (0, 1).

Hint: Convergence in (−1, 1) follows from the ratio test, divergence if
|x| ≥ 1 follows from the fact that the terms of a converent series must con-
verge to zero. Moreover, the convergence on any compact subset [−T, T ],
T < 1, is uniform – since the comparison is with a fixed absolutely con-
vergent sequence. Thus the limit is in fact continuous on (−1, 1) since it
is continuous on [−T, T ] for each T < 1 by the continuity of a uniformly
convergent sequence of continuous functions. Hence, by restriction, it is
continuous on (0, 1) (maybe put in to deliberately confuse?)


