
18.100B, FALL 2002
FINAL EXAM: DECEMBER 16

Try each of the questions; the first seven are worht 12 points each, the last one
is harder and is worth 16. You may use theorems from class, or the book, provided
you can recall them correctly! This includes standard properties of the exponential
and trigonometric functions. No books or papers are permitted.

Overall comment: There were many problems arising simply from a failure to
express ideas clearly and directly. I think this was a pretty easy exam, except that
I asked for lots of explanations and this bothered quite a few people.

Problem 1

Show that the set {z ∈ C; z = exp(it3) for some t ∈ R} is connected.

Solution. As was shown in class, the function exp : C −→ C is continuous. As a
polynomial, R 3 t 7−→ it3 ∈ C is continuous, so the composite R 3 t 7−→ exp(it3) ∈
C is continuous. Thus, as the image of the connected set R under a continuous
map, the given set is connected. �

Comment: Several round-about proofs that were acceptable.

Problem 2

Let {xn} be a sequence in a metric space X and suppose that there is a point
p ∈ X with the property that every subsequence of {xn} has a subsequence which
converges to p. Show that {xn} converges to p.

Solution. Suppose that {xn} does not converge to p. Then, for some ε > 0 there
exists no N with the property that d(xn, p) < ε if n > N. This means that the
set {n ∈ N; d(xn, p) ≥ ε} is infinite. Hence there is a strictly increasing map
N 3 i 7−→ ni with values in this set. This means that the subsequence xni

satisfies
d(xni , p) ≥ ε for all i. But such a sequence can have no subsequence converging to
p. Hence the only remaining possibility is that xn does converge to p. �

Comment: Many tried to prove this by elimating convergent subsequences re-
peatedly. This cannot work since there might always be an infinite sequence re-
maining.

Problem 3

(1) Why is the function f(x) = exp( x3−15
x2+x+1 ) continuously differentiable on

[0, 1]?
(2) Why does f have a minimum value on this interval?

Solution. On [0, 1] the polynomial x2 + x + 1 ≥ 1 so the rational function (x3 −
15)/(x2 + x + 1) is continuously differentiable, with values in R, by the quotient
rule. Since exp is continuously differentiable on R the composite, f, is continuously
differentiable (by the chain rule).
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By a theorem in Rudin, a real-valued continuous function on a compact metric
space, such as [0, 1] has a minimum. �

Comment: Generally well done, as it should have been.

Problem 4

Let f : R −→ R be twice differentiable and suppose that 0 is a local maximum
of f, i.e. for some ε > 0 f(x) ≤ f(0) for all x ∈ (−ε, ε). Show that f ′′(0) ≤ 0.

Solution. We know from class that f ′(0) = 0 since 0 is a local maximum – in any
case this follows that the difference quotient (f(x)− f(0))/x is ≥ 0 for x ∈ (−ε, 0)
and ≤ 0 for x ∈ (0, ε). By the mean value theorem for each n, large, there is a
point cn ∈ (−1/n, 0) such that f(x) − f(0) = xf ′(cn), so f ′(cn) ≥ 0. Since f ′

is differentiable we must have f ′(cn)/cn → f ′′(0) as n → ∞ which shows that
f ′′(0) ≤ 0. �

Comment: Alternatively one can assume that f ′′(0) > 0 and arrive at a contra-
diction. However, one cannot assume that f ′′(x) > 0 for x near 0, since I did not
say that f ′′ is continuous – this lead many people into error. Similarly you cannot
just assume that f ′(x) ≥ 0 for x ∈ (−δ, 0) and small enough δ. It is simply not true
in general.

Problem 5

If g : R −→ R is a differentiable function and g′ is bounded on R, show that g is
uniformly continuous.

Solution. By assumption, there exists M ∈ R such that |g′(x)| < M for all x ∈ R.
By the Mean Value Theorem, if x < y ∈ R there exists c ∈ (x, y) such that
g(y)− g(x) = g′(c)(y − x). It follows that

|g(y)− g(x)| ≤ M |x− y|

since this is true whe x = y, and for x 6= y, exchanging x and y as necessary. Thus,
given ε > 0 choosing δ < ε/M, |g(y) − g(x)| < ε whenever |y − x| < δ and this is
the definition of uniform continuity. �

Comment: Arguments involving the integration of g′ received few marks, since
it is not assumed that g′ is integrable. Claims that the difference quotients were
uniformly bounded without appeal to the MVT were not successful.

Problem 6

Using standard properties of the cosine function explain why the formula

f(x) =
∞∑

n=1

1
n3

cos(nx)

defines a continuously differentiable function on the real line.

Solution. Since | cos(nx)| ≤ 1, and the series
∞∑

n=11

1
n3 converges,

∞∑
n=1

1
n3 cos(nx) con-

verges uniformly on R, by Weierstrass Theorem. Since the terms are continuous,
the function f exists and is continuous. The term-by-term differentiated series,
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∞∑
n=1

− 1
n2 sin(nx) has terms bounded by the convergent series

∞∑
n=1

1
n2 so it too con-

verges uniformly on R by the same argument. By a Theorem in Rudin the uniform
convergence of the term-by-term differentiated series and the convergence of the
series (even at one point) implies that the sum is differentiable and that f ′ is the
sum of the series of derivatives. Since the terms in the latter are continuous, f ′ is
also continuous by its uniform convergence. �

Comment: Sorry about the typo here. Not mentioning uniform convergence
meant few marks, not proving it meant losing quite a few.

Problem 7

Explain carefully why the Riemann-Stieltjes integral∫ 1

0

exp(3x2)dα

exists for any increasing function α : [0, 1] −→ R.

Solution. By a theorem in Class/Rudin any continuous function on a bounded
interval is Riemann-Stieltjes integrable with respect to any increasing α. In this
case exp(3x2) is continuous, as the composite continuous functions. �

Comment: At least everyone got this right. Mind you there were some close
calls.

Problem 8

Let A : [0, 1]2 −→ R be a continuous function satisfying

sup
[0,1]2

|A(x, y)| ≤ 1
2
.

(1) Show that if f ∈ C([0, 1]) then

g(x) =
∫ 1

0

A(x, y)f(y)dy ∈ C([0, 1]).

(2) Estimate ‖g‖ = sup[0,1] |g(x)| in terms of ‖f‖.
(3) If h ∈ C([0, 1]) is a fixed function show that

(Gf)(x) = h(x) +
∫ 1

0

A(x, y)f(y)dy

defines a contraction G on C([0, 1]) sending f to Gf.
(4) Show that there exists a unique f ∈ C([0, 1]) such that

f(x) = h(x) +
∫ 1

0

A(x, y)f(y)dy ∀ x ∈ [0, 1].

Solution. (1) Since A is continuous, if f ∈ C([0, 1]) then for each x ∈ [0, 1],
A(x, y)f(y) is continuous and hence integrable on [0, 1]. Thus g(x) exists
for each x ∈ [0, 1]. To see that it is continuous, note that A is uniformly
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continuous, since [0, 1]2 is compact. Thus given ε > 0 there exists δ > 0
such that |x− x′| < δ implies |A(x, y)−A(x′, y)| < ε for all y ∈ [0, 1]. Thus

|g(x)− g(x′)| = |
∫ 1

0

(A(x, y)−A(x′, y))f(y)dy| ≤ ε sup |f |

shows that g is continuous, so g ∈ C([0, 1]).
(2) Estimate the integral

|g(x)| ≤
∫ 1

0

|A(x, y)||f(y)|dy ≤ 1
2

sup |f |

shows that ‖g‖ ≤ 1
2‖f‖.

(3) If f1, f2 ∈ C([0, 1]) then

G(f1)(x)−G(f2)(x) =
∫ 1

0

A(x, y)(f1(y)− f2(y))dy.

By the estimate above, d(G(f1), G(f2)) = ‖G(f1)−G(f2)| ≤ 1
2‖f1 − f2‖ =

1
2d(f1, f2) in terms of the distance on C([0, 1]). Thus G is a contraction.

(4) Since C([0, 1]) is complete, the Contraction Mapping Principle implies that
there is a unique solution of G(f) = f which is the desired equation.

�

Comment: Many people did not see there was anything to prove as regards the
continuity of g in the first part, or tried to use the FTC (with not good effect).
In the third part there was often confusion on what the distance being estimated
was (and why the h(x) drops out.) In the last part you should have remembered
to say that C([0, 1]) is complete, since it is one of the conditions in the Contraction
Mapping Principle.


