ASCOLI-ARZELA THEOREM

Theorem. If K is a compact metric space then a subset F' C C(K) of the space of
continuous complex-valued functions on K equipped with the uniform distance, is
compact if and only if it is closed, bounded and equicontinuous.

You should recall that a continuous function on a compact metric space is bounded,
so the function

d(f,g) = sup |f(x) — g(z)]

is well-defined. We have shown previously that this is a distance, i.e. C(K) is a
metric space, that convergence with respect to this distance is equivalent to uniform
convergence and that as a metric space C(K) is complete. We will use all these
results freely. The definition of equicontinuity of a subset of C(K) is ‘uniform (in
f € F) uniform (in the point in K) continuity’. That is, given € > 0 there must
exist > 0 such that

(1) |f(x)— fly)| <eVxye K withd(z,y) <dandV f € F.

So, the failure of F C C(K) to be equicontinuous means that this condition fails.
That is, for some € > 0 there exists no & > 0 for which the condition holds. Restated
fully, this means that for some € > 0 and every § > 0 there exists x,y € K with
d(z,y) < 6 and some f € F such that |f(x) — f(y)| > €. Since each f is uniformly
continuous, as § gets smaller different choices of f must be involved.

Proof. Necessity:- We know that a compact set in any metric space is closed and
bounded, so we only need to show that a compact set in C(K) is equicontinuous.
Suppose it were not equicontinuous. From what we have just seen, this means
there exists € > 0 such that for each n € N there is a pair of points x,,y, € K
and and a function f, € F such that d(x,,y,) < 1/n but |fu(z) — fu(y)| > e
This fixes a sequence {f,} in F' and we claim that this can have no (uniformly)
convergent subsequence. The point of course is that it can have no equicontinuous
subsequence — because taking a subsequence n; we can still violate the condition
for the same € > 0 and every § > 0 just by taking n; > 1/6. Now, we showed
before that a uniformly convergent sequence is equicontinuous so this implies that
F' is not compact — since as a compact set any sequence in it would have to have a
(uniformly) convergent subsequence.

1n case you forgot the proof of equicontinuity for a uniformly convergent sequence f, € C(K)
here it is in a nutshell:- Let f be the limit, so by uniform convergence, given € > 0 there exists N
such that n > N implies | fn(z) — f(z)| < €/3 for all z € K. Now, for each j < N the function f; is
uniformly continuous so there exist §; > 0 such that d(z,y) < d; implies |f;(z) — f;(y)| < €. The
limit f is also uniformly continuous, so there exists §' > 0 such that |f(z) — f(y)| < €/3 whenever
d(z,y) <6’ Set § = min(§’, minj<n ;) > 0. If d(z,y) < 6 < &’ then for n > N,

[fn(@) = fn@)| < |fu(@) = f(@)] + [f (@) = fFW) + [fa(y) — FW)] <e
Thus this in fact holds for all n since § < §; for j < N as well, so the set of functions forming the
sequence is equicontinuous.
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Sufficiency:- So, now we get to assume that F' is closed, bounded and equicon-
tinuous and have to prove that it is compact in C(K). The first thing to recall is
that any compact metric space has a countable dense subset. This follows directly
from the definition of compactness. Namely, given any k € N, cover K by all the
balls of radius 1/k (centred at all the points of K.) By compactness this has a finite
subcover, let @, C K be the set of centers of such a finite subcover. Then every
point of K is in one of the balls, so it is distant at most 1/k from (at least) one of
the points in Q. The union, @, of these finite sets is (at most) countable and is
clearly dense in K — any point in K is the limit of a sequence in Q.

So, let {f,} be a sequence in F. Since F is equicontinuous, so is the sequence, and
we need to show that it has a (uniformly) convergent subsequence; since F' is closed
the limit will be in F. Take a point ¢ € @, then {f,,(¢)} is a bounded sequence in C.
So, by Heine-Borel, we may extract a subsequence of f,, so that {f,(¢)} converges
in C. Since Q is countable we can construct successive subsequences, fy, ; of the
preceding subsequence fp, _, ., so that the kth subsequence converges at the kth
point of Q. Now, the diagonal sequence f,,, = fy, , is ‘eventually’ a subsequence of
Jny; for each k, i.e. after a finite number of terms it is a subsequence. So along this
subsequence fy,(g) converges for each point in @ — convergence being a property of
the ‘tail’ of the sequence. So, let this sequence be {g,}, it is a subsequence of the
original sequence {f,} and we want to show that it converges uniformly; it suffices
to show that it is uniformly Cauchy.

Suppose € > 0 is given. By the equicontinuity of the sequence we can choose
0 > 0 so that |g,(x) — gn(y)| < €/3 whenever d(x,y) < J. Next choose k > 1/0.
Since there are only finitely many points in @); we may choose N so large that
l9n(q) — gm(q)| < €/3 if ¢ € Q and n, m > N. Then for a general point z € K
there exists ¢ € Qy with d(z,q) < 1/k < ¢ so

(2)  gn(@) = gm(@)] < |90 (®) = gn(@)| + |9n(@) — gm(D)| + |gm (@) — gm(2)] < €

whenever n, m > N. Thus the sequence is uniformly Cauchy, hence uniformly
convergent and we have proved the compactness of F. ([l

Next consider Peano’s (or the Cauchy-Peano) existence theorem for ordinary
differential equations. Here we are looking for a function u : [0,e] — R on a
(possibly small) interval which is differentiable and satisfies

3) u'(z) = f(x,u()), u(0) =0

where f : [0,1] X [-a,a] — R is a given continuous function of two arguments with
a > 0. You might hope that the solution exists for x € [0, 1] but this is generally
not the case. Let M = sup |f| then we can conclude that the solution exists for
at least as long as € = a/M. This is reasonable from since we must have (of
course assuming the solution exists) |u(e)| = |u(e) —u(0)| < eM by the Mean Value
Theorem, so there is no opportunity for the solution to ‘escape’ from the domain
before ¢ = a/M.

So, how to we show that has a solution? We cannot do it directly, except in
very special cases. For instance if f does not depend on the second variable at all,
then we can just integrate and use the Fundamental Theorem of Calculus to see
that

ua) = [ ssyis
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Peano’s idea was to try something similar in the general case and think a little
about the definition of the Riemann integral. So, for each n divide up the interval
[0,¢€], e = a/M, into n equal pieces [x;_1, z;] using the notation for partitions. Now,
we define a function w, ‘as though f(x,y) was constant in y on this interval’ and
assuming we know already what has happened in the previous interval. We can
think of this as defining two functions u,, v, : [0,€] — [—a, a] where v,, is constant
on [x;_1,x;] and is equal to u,(z;—1) and wu,(x) is linear on [x;_1, ;] and is given

by
(4) Un () = up(@iz1) + / f(s,v,)ds on [z;—1,x4].

It follows that w, : [0,¢] — [—a,a] is continuous and wv,;[0,¢] — [—a,a] is
piecewise constant but generally jumps across the ends of the intervals. From

(5) [tn () — up(zi—1)] < Me/n on [z;-1, 2]
and hence that
(6) |tn () — vp(x)| < Me/n on [0, €.

Note that |u,| < a and both functions do exist on the whole interval.

If  and 2’ are in the same interval [z;_1,x;] then estimating the integral (or
using the Mean Value Theorem) shows that
(7) |un () = un ()] < M|z — 2]
So it follows that the same is true for any x, y € [0,€]. This shows that the se-
quence u, € C([0,€]) is equicontinuous. So, by the Ascoli-Arzela Theorem, it has a
uniformly convergent subsequence u,, — u uniformly on [0, €]. On the other hand,
from @ it follows that the sequence v,, must also be uniformly convergent. Thus
in fact, v, — u uniformly as well. Now, f(z,v,(z)) is Riemann integrable and it is
also a uniformly convergent sequence since f is uniformly continuous (in the second
variable). Thus by our theorem on convergence of Riemann integrals,

/Om f(s,vn(s))ds — /OI f(s,u(s))ds

for each = € [0, €]. But this means that

u(z) = /091 f(s,u(s)) Vxeloe.

It now follows that u is differentiable — since f(s,u(s)) is continuous — and by the
Fundamental Theorem of Calculus — satisfies .

You might think that there can be only one solution to such a differential equa-
tion, with given initial value as here. This is certainly the case if f(z,y) is inde-
pendent of the second variable. However, in general it is not true. For instance the
function

(8) w(z) = 22 /4 satisfies v’ = z/2 = u? on [0, 1]

which is for f(z,y) = |y|? which is certainly continuous. On the other hand
u(x) = 0 is also a solution.

Theorem. If f is continuous on [0,1] X [—a,a] and in addition is Lipschitz in the
second variable,

(9) [f(z,y) = f(z,2)] < Aly — 2]
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then there is a unique solution to (3) on [0,a/M].
Proof. If u; and ug are two solutions then by the Mean Value Theorem

ur(2) — uz(x) — (u1(0) — u2(0))| < wsup|uy —uy| < zA sup [ua (s) — ua(s)]-
Since u1(0) = uz(0), taking < § shows that ui(z) = uz(x) on [0, 6] where § is the
smaller of € and % The argument can be iterated to show that they remain equal
as long as both exist. [



