
ASCOLI-ARZELÀ THEOREM

Theorem. If K is a compact metric space then a subset F ⊂ C(K) of the space of
continuous complex-valued functions on K equipped with the uniform distance, is
compact if and only if it is closed, bounded and equicontinuous.

You should recall that a continuous function on a compact metric space is bounded,
so the function

d(f, g) = sup
x∈K
|f(x)− g(x)|

is well-defined. We have shown previously that this is a distance, i.e. C(K) is a
metric space, that convergence with respect to this distance is equivalent to uniform
convergence and that as a metric space C(K) is complete. We will use all these
results freely. The definition of equicontinuity of a subset of C(K) is ‘uniform (in
f ∈ F ) uniform (in the point in K) continuity’. That is, given ε > 0 there must
exist δ > 0 such that

(1) |f(x)− f(y)| < ε ∀ x, y ∈ K with d(x, y) < δ and ∀ f ∈ F.

So, the failure of F ⊂ C(K) to be equicontinuous means that this condition fails.
That is, for some ε > 0 there exists no δ > 0 for which the condition holds. Restated
fully, this means that for some ε > 0 and every δ > 0 there exists x, y ∈ K with
d(x, y) < δ and some f ∈ F such that |f(x)− f(y)| ≥ ε. Since each f is uniformly
continuous, as δ gets smaller different choices of f must be involved.

Proof. Necessity:- We know that a compact set in any metric space is closed and
bounded, so we only need to show that a compact set in C(K) is equicontinuous.
Suppose it were not equicontinuous. From what we have just seen, this means
there exists ε > 0 such that for each n ∈ N there is a pair of points xn, yn ∈ K
and and a function fn ∈ F such that d(xn, yn) < 1/n but |fn(x) − fn(y)| ≥ ε.
This fixes a sequence {fn} in F and we claim that this can have no (uniformly)
convergent subsequence. The point of course is that it can have no equicontinuous
subsequence – because taking a subsequence nj we can still violate the condition
(1) for the same ε > 0 and every δ > 0 just by taking nj > 1/δ. Now, we showed
before that a uniformly convergent sequence is equicontinuous so this implies that
F is not compact – since as a compact set any sequence in it would have to have a
(uniformly) convergent subsequence. 1

1In case you forgot the proof of equicontinuity for a uniformly convergent sequence fn ∈ C(K)
here it is in a nutshell:- Let f be the limit, so by uniform convergence, given ε > 0 there exists N

such that n > N implies |fn(x)−f(x)| < ε/3 for all x ∈ K. Now, for each j ≤ N the function fj is

uniformly continuous so there exist δj > 0 such that d(x, y) < δj implies |fj(x)− fj(y)| < ε. The
limit f is also uniformly continuous, so there exists δ′ > 0 such that |f(x)− f(y)| < ε/3 whenever
d(x, y) < δ′. Set δ = min(δ′,minj≤N δj) > 0. If d(x, y) < δ ≤ δ′ then for n > N,

|fn(x)− fn(y)| ≤ |fn(x)− f(x)|+ |f(x)− f(y)|+ |fn(y)− f(y)| < ε.

Thus this in fact holds for all n since δ ≤ δj for j ≤ N as well, so the set of functions forming the

sequence is equicontinuous.
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Sufficiency:- So, now we get to assume that F is closed, bounded and equicon-
tinuous and have to prove that it is compact in C(K). The first thing to recall is
that any compact metric space has a countable dense subset. This follows directly
from the definition of compactness. Namely, given any k ∈ N, cover K by all the
balls of radius 1/k (centred at all the points of K.) By compactness this has a finite
subcover, let Qk ⊂ K be the set of centers of such a finite subcover. Then every
point of K is in one of the balls, so it is distant at most 1/k from (at least) one of
the points in Qk. The union, Q, of these finite sets is (at most) countable and is
clearly dense in K – any point in K is the limit of a sequence in Q.

So, let {fn} be a sequence in F. Since F is equicontinuous, so is the sequence, and
we need to show that it has a (uniformly) convergent subsequence; since F is closed
the limit will be in F. Take a point q ∈ Q, then {fn(q)} is a bounded sequence in C.
So, by Heine-Borel, we may extract a subsequence of fn so that {fn(q)} converges
in C. Since Q is countable we can construct successive subsequences, fnk,j

of the
preceding subsequence fnk−1,j

, so that the kth subsequence converges at the kth
point of Q. Now, the diagonal sequence fni

= fni,i
is ‘eventually’ a subsequence of

fnk,j
for each k, i.e. after a finite number of terms it is a subsequence. So along this

subsequence fni(q) converges for each point in Q – convergence being a property of
the ‘tail’ of the sequence. So, let this sequence be {gn}, it is a subsequence of the
original sequence {fn} and we want to show that it converges uniformly; it suffices
to show that it is uniformly Cauchy.

Suppose ε > 0 is given. By the equicontinuity of the sequence we can choose
δ > 0 so that |gn(x) − gn(y)| < ε/3 whenever d(x, y) < δ. Next choose k > 1/δ.
Since there are only finitely many points in Qk we may choose N so large that
|gn(q) − gm(q)| < ε/3 if q ∈ Qk and n, m > N. Then for a general point x ∈ K
there exists q ∈ Qk with d(x, q) < 1/k < δ so

(2) |gn(x)− gm(x)| ≤ |gn(x)− gn(q)|+ |gn(q)− gm(q)|+ |gm(q)− gm(x)| < ε

whenever n, m > N. Thus the sequence is uniformly Cauchy, hence uniformly
convergent and we have proved the compactness of F. �

Next consider Peano’s (or the Cauchy-Peano) existence theorem for ordinary
differential equations. Here we are looking for a function u : [0, ε] −→ R on a
(possibly small) interval which is differentiable and satisfies

(3) u′(x) = f(x, u(x)), u(0) = 0

where f : [0, 1]× [−a, a] −→ R is a given continuous function of two arguments with
a > 0. You might hope that the solution exists for x ∈ [0, 1] but this is generally
not the case. Let M = sup |f | then we can conclude that the solution exists for
at least as long as ε = a/M. This is reasonable from (3) since we must have (of
course assuming the solution exists) |u(ε)| = |u(ε)−u(0)| ≤ εM by the Mean Value
Theorem, so there is no opportunity for the solution to ‘escape’ from the domain
before ε = a/M.

So, how to we show that (3) has a solution? We cannot do it directly, except in
very special cases. For instance if f does not depend on the second variable at all,
then we can just integrate and use the Fundamental Theorem of Calculus to see
that

u(x) =

∫ x

0

f(s)ds.
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Peano’s idea was to try something similar in the general case and think a little
about the definition of the Riemann integral. So, for each n divide up the interval
[0, ε], ε = a/M, into n equal pieces [xi−1, xi] using the notation for partitions. Now,
we define a function un ‘as though f(x, y) was constant in y on this interval’ and
assuming we know already what has happened in the previous interval. We can
think of this as defining two functions un, vn : [0, ε] −→ [−a, a] where vn is constant
on [xi−1, xi] and is equal to un(xi−1) and un(x) is linear on [xi−1, xi] and is given
by

(4) un(x) = un(xi−1) +

∫ x

xi−1

f(s, vn)ds on [xi−1, xi].

It follows that un : [0, ε] −→ [−a, a] is continuous and vn; [0, ε] −→ [−a, a] is
piecewise constant but generally jumps across the ends of the intervals. From (4)

(5) |un(x)− un(xi−1)| ≤Mε/n on [xi−1, xi]

and hence that

(6) |un(x)− vn(x)| ≤Mε/n on [0, ε].

Note that |un| ≤ a and both functions do exist on the whole interval.
If x and x′ are in the same interval [xi−1, xi] then estimating the integral (or

using the Mean Value Theorem) shows that

(7) |un(x)− un(x′)| ≤M |x− x′|
So it follows that the same is true for any x, y ∈ [0, ε]. This shows that the se-
quence un ∈ C([0, ε]) is equicontinuous. So, by the Ascoli-Arzelà Theorem, it has a
uniformly convergent subsequence un → u uniformly on [0, ε]. On the other hand,
from (6) it follows that the sequence vn must also be uniformly convergent. Thus
in fact, vn → u uniformly as well. Now, f(x, vn(x)) is Riemann integrable and it is
also a uniformly convergent sequence since f is uniformly continuous (in the second
variable). Thus by our theorem on convergence of Riemann integrals,∫ x

0

f(s, vn(s))ds→
∫ x

0

f(s, u(s))ds

for each x ∈ [0, ε]. But this means that

u(x) =

∫ x

0

f(s, u(s)) ∀ x ∈ [0, ε].

It now follows that u is differentiable – since f(s, u(s)) is continuous – and by the
Fundamental Theorem of Calculus – satisfies (3).

You might think that there can be only one solution to such a differential equa-
tion, with given initial value as here. This is certainly the case if f(x, y) is inde-
pendent of the second variable. However, in general it is not true. For instance the
function

(8) u(x) = x2/4 satisfies u′ = x/2 = u
1
2 on [0, 1]

which is (3) for f(x, y) = |y| 12 which is certainly continuous. On the other hand
u(x) ≡ 0 is also a solution.

Theorem. If f is continuous on [0, 1] × [−a, a] and in addition is Lipschitz in the
second variable,

(9) |f(x, y)− f(x, z)| ≤ A|y − z|
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then there is a unique solution to (3) on [0, a/M ].

Proof. If u1 and u2 are two solutions then by the Mean Value Theorem

|u1(x)− u2(x)− (u1(0)− u2(0))| ≤ x sup |u′1 − u′2| ≤ xA sup
0,s
|u1(s)− u2(s)|.

Since u1(0) = u2(0), taking x < 1
2 shows that u1(x) = u2(x) on [0, δ] where δ is the

smaller of ε and 1
2 . The argument can be iterated to show that they remain equal

as long as both exist. �


