
18.100B, FALL 2002
IN-CLASS TEST 1: OCTOBER 17

Try each of the questions; they will be given equal value even though some are
longer (or harder) and some less so. You may use theorems from class, or the book,
provided you can recall them correctly! No books or papers are permitted.

You will likely get away with less explanation than I am giving here. I will add
some comments on your solutions when I have seen them.

Problem 1

Let {xn} be a sequence of positive real numbers such that x3
n > n. Show that

1/xn → 0 as n →∞ with respect to the usual metric on R.

Solution. The sequence yn = 1/xn satifies 0 < y3
n < 1/n. Given ε > 0 choose

N > 1/ε3, then n > N implies y3
n < 1/n < 1/N < ε3 so yn < ε and it follows that

yn → 0 as n →∞. �

Problem 2

Consider the metric space which is the subset E = {0} ∪
⋃

n∈N{1/n} of the real
numbers with the metric induced by the usual metric on R.

(1) What is the set E′ of limit points of E, in R?
(2) Describe all the closed subsets of E.
(3) Describe all the compact subsets of E.
(4) Describe all the connected subsets of E.

In each case justify your answer.

Solution. (1) 0 is the only limit point. It is a limit point since 1/n → 0 as
n →∞ and all other points are isolated, so cannot be limit points.

(2) A subset C ⊂ E is closed if it is finite or contains 0 (or both). To see this,
recall that C is closed in E if and only if it contains all its limit points. A
limit point of C must be a limit point of E so the only possibilities are that
C has no limit points or it contains 0. In the latter case it is closed and the
former means that 0 is either not in C and is not a limit point of C, which
therefore must be finite.

(3) Since E contains its only limit point in R it is closed and bounded in R, so
it is compact by the Heine-Borel Theorem. Thus the compact subsets of E
are just the closed sets as described above, since as shown in class a subset
of a compact space is compact if and only if it is closed.

(4) Let G ⊂ E be a connected set. If p = 1/n ∈ G is one of the isolated points
of E then G = A∪B, A = {p}, B = G\{p} is a decomposition with Ā = A
and p /∈ B̄ so Ā ∩ B = ∅ and Ā ∩ B = ∅. Thus B = ∅ by the definition
of connectedness and G = {p}. Thus the only possibility is that G consists
of any one point of E and these sets are trivially connected since in any
decompostion {q} = A ∪B with A ∪B = ∅ one of A or B must be empty.
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Problem 3

Prove that in any metric space, a finite union of compact subsets is compact.

Solution. Let Ki, i = 1, . . . , N be a finite collection of compact sets in a metric
space X and let K =

⋃
i Ki be their union. An open cover Ua, a ∈ A of K covers

each of the Ki. By the assumed compactness there is a finite subcover Uai,j
such

that Ki ⊂
⋃N(i)

j=1 Uai,j
for each i. All these sets taken together give a finite subcover

of K which is therefore compact. �

Problem 4

Suppose that x and y are two points in the unit disk D = {|z| < 1; z ∈ R2} in R2.
Using results from class (or otherwise) show that the set {tx+(1− t)y; t ∈ [0, 1]} is
connected. Using this, or otherwise, show that if D has a decomposition D = A∪B
where Ā ∩ B = ∅ and A ∩ B̄ = ∅ (closure in D) then one of them must be empty.
What does this say about D?

Solution. For two fixed points x, y ∈ D, the map f : [0, 1] −→ tx + (1 − t)y is
continuous since each component is a linear function of t, hence continuous. By
theorems from class, the interval [0, 1] is connected and the image of a connected set
under a continuous map is connected. Thus the line Lx,y = {tx+(1− t)y; t ∈ [0, 1]}
is connected. It lies in D by the triangle inequality

|tx + (1− t)y| ≤ t|x|+ (1− t)|y| < 1.

Now, suppose that D = A ∪ B is a decomposition as described above and that
neither A nor B is empty. Thus we can choose x ∈ A and y ∈ B. Now consider the
decomposition of Lx,y = A′ ∪ B′ where A′ = A ∩ Lx,y and B′ = B ∩ Lx,y. Since
Lx,y is the continuous image of a compact set it is also compact, and hence closed.
Thus the closures in Lx,y satisfy A′ ⊂ Ā∩Lx,y and B′ ⊂ B̄∩Lx,y. Hence we deduce
that A′ ∩ B′ = A′ ∩ B′ = ∅. So using the connectedness of Lx,y we deduced that
one of A′ of B′ must be empty, but this contradicts the assumption that both A
and B are non-empty. Thus one of A or B must in fact be empty and this means
that D itself must be connected. �

Remark: What you are showing here is that ‘pathwise connectedness implies
connectedness’.


