18.100B, FALL 2002 PRACTICE TEST 2

Try each of the questions; they will be given equal value. You may use theorems from class, or the book, provided you can recall them correctly!

Problem 1

Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous real-valued function. Show that there exists $c \in (0,1)$ such that

$$\int_0^1 f(x)dx = f(c).$$

Problem 2

(This is basically Rudin Problem 4.14)

- Let $f : [0, 1] \longrightarrow [0, 1]$ be continuous.
- (1) State why the map g(x) = f(x) x, from [0, 1] to \mathbb{R} is continuous.
- (2) Using this, or otherwise, show that $L = \{x \in [0,1]; f(x) \le x\}$ is closed and $\{x \in [0,1]; f(x) < x\}$ is open.
- (3) Show that L is not empty.
- (4) Suppose that $f(x) \neq x$ for all $x \in [0, 1]$ and conclude that L is open in [0, 1] and that $L \neq [0, 1]$.
- (5) Conclude from this, or otherwise, that there must in fact be a point $x \in [0, 1]$ such that f(x) = x.

Problem 3

Consider the function

$$f(x) = \frac{-x(x+1)(x-100)}{x^{44} + x^{34} + 1}$$

for $x \in [0, 100]$.

- (1) Explain why f has derivatives of all orders.
- (2) Compute f'(0).
- (3) Show that there exists $\epsilon > 0$ such that f(x) > 0 for $0 < x < \epsilon$.
- (4) Show that there must exist a point x with f'(x) = 0 and 0 < x < 100.

Problem 4

If $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $g : \mathbb{R} \longrightarrow \mathbb{R}$ are two functions which are continuous at 0, show that the function

$$h(x) = \max\{f(x), g(x)\}, \ x \in \mathbb{R}$$

is also continuous at 0.