
18.100B, FALL 2002
PRACTICE TEST 2

Try each of the questions; they will be given equal value. You may use theorems
from class, or the book, provided you can recall them correctly!

Problem 1

Let f : [0, 1] −→ R be a continuous real-valued function. Show that there exists
c ∈ (0, 1) such that ∫ 1

0

f(x)dx = f(c).

Solution. If m and M are respectively the infimum and supremum of f on [0, 1] then
f([0, 1]) = [m,M ] since these values are attained and f([0, 1]) must be connected.
Since

m ≤ I =
∫ 1

0

f(x)dx ≤ M

it follows that I ∈ [m,M ] so there exists c ∈ [0, 1] with f(c) = I =
∫ 1

0
f(x)dx. �

Problem 2

(This is basically Rudin Problem 4.14)
Let f : [0, 1] −→ [0, 1] be continuous.
(1) State why the the map g(x) = f(x)− x, from [0, 1] to R is continuous.
(2) Using this, or otherwise, show that L = {x ∈ [0, 1]; f(x) ≤ x} is closed and

{x ∈ [0, 1]; f(x) < x} is open.
(3) Show that L is not empty.
(4) Suppose that f(x) 6= x for all x ∈ [0, 1] and conclude that L is open in [0, 1]

and that L 6= [0, 1].
(5) Conclude from this, or otherwise, that there must in fact be a point x ∈ [0, 1]

such that f(x) = x.

I found the wording of this question a bit confusing.

Solution. (1) If f and g are continuous then so is c1f + c2g for any constants
and x is continuous directly from the definition, so g(x) = f(x) − x is
continuous.

(2) By definition, L = {x; g(x) ≤ 0} = g−1([−∞, 0]) is the inverse image of
a closed set, hence is closed. Similarly the second set is g−1((−∞, 0)) so
is the inverse image of an open set under a continuous map, so is open in
[0, 1].

(3) Since g(1) = f(1)− 1 ≤ 0, 1 ∈ L.
(4) If f(x) 6= x for all x ∈ [0, 1] then g(x) 6= 0 for all x ∈ [0, 1] and hence

L = g−1((−∞, 0)) is open in [0, 1]. Thus L is both open and closed and
is non-empty so L = [0, 1]. However, g(0) = f(1) − 0 ≥ 0 so this is not
possible and L 6= [0, 1].
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(5) Thus f(x) 6= x for all x ∈ [0, 1] is not possible, so there must exist a point
x ∈ [0, 1] with f(x) = x.

�

Problem 3

Consider the function

f(x) =
−x(x + 1)(x− 100)

x44 + x34 + 1
for x ∈ [0, 100].

(1) Explain why f has derivatives of all orders.
(2) Compute f ′(0).
(3) Show that there exists ε > 0 such that f(x) > 0 for 0 < x < ε.
(4) Show that there must exist a point x with f ′(x) = 0 and 0 < x < 100.

Solution. (1) Polynomials are infinitely differentiable and the quotient p/q of
two infinitely differentiable functions is infinitely differentiable on any in-
terval on which q 6= 0. Since x44 + x34 + 1 > 0 for x ∈ R it follows that
f = p/q is infinitely differentiable on R.

(2) Since f ′(0) = p′(0)q(0)−f(0)q′(0)
q2(0) and p(0) = 0, p′(0) = 100, q(0) = 1, q′(0) =

0 it follows that f ′(0) = 100.
(3) Since f ′(x) is continuous, there exists ε > 0 such that f ′(x) > 0 if x ∈ [0, ε).

By the mean valued theorem for x ∈ (0, ε),

f(x) = xf ′(y), y ∈ (0, ε) =⇒ f(x) > 0.

(4) From the form of f, f(100) = 0 so, again by the mean value theorem

f(100)− f(0) = 0 = 100f ′(x)

for some x ∈ (0, 100).
�

Problem 4

If f : R −→ R and g : R −→ R are two functions which are continuous at 0,
show that the function

h(x) = max{f(x), g(x)}, x ∈ R
is also continuous at 0.

Solution. Either h(0) = f(0) or h(0) = g(0) (or both). Since h is unchanged if we
exchange f and g we may assume that h(0) = f(0).

If g(0) 6= f(0) then g(0) < f(0). By the continuity of f and g, given ε > 0 there
exists δ1 > 0 and δ2 > 0 such that

|x| < δ1 =⇒ |f(x)− f(0)| < ε, |x| < δ2 =⇒ |g(x)− g(0)| < ε.

Taking δ = min(δ1, δ2) and ε < 1
2 (f(0) − g(0)) gives both g(x) ≤ g(0) + 1

2ε and
f(x) ≥ f(0)− 1

2ε ≥ g(x) on (δ, δ) so h(x) = f(x) is continuous at 0.
On the other hand if g(0) = f(0) then taking δ = min(δ1, δ2) means that

f(x), g(x) ∈ (h(0) − ε, h(0) + ε) so |h(x) − h(0)| < ε and again the continuity
of h follows. �


