18.100B, FALL 2002 PRACTICE TEST 2

Try each of the questions; they will be given equal value. You may use theorems from class, or the book, provided you can recall them correctly!

Problem 1

Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous real-valued function. Show that there exists $c \in (0,1)$ such that

$$\int_0^1 f(x)dx = f(c).$$

Solution. If m and M are respectively the infimum and supremum of f on [0, 1] then f([0, 1]) = [m, M] since these values are attained and f([0, 1]) must be connected. Since

$$m \le I = \int_0^1 f(x) dx \le M$$

it follows that $I \in [m, M]$ so there exists $c \in [0, 1]$ with $f(c) = I = \int_0^1 f(x) dx$. \Box

Problem 2

(This is basically Rudin Problem 4.14)

Let $f: [0,1] \longrightarrow [0,1]$ be continuous.

- (1) State why the the map g(x) = f(x) x, from [0, 1] to \mathbb{R} is continuous.
- (2) Using this, or otherwise, show that $L = \{x \in [0,1]; f(x) \le x\}$ is closed and $\{x \in [0,1]; f(x) < x\}$ is open.
- (3) Show that L is not empty.
- (4) Suppose that $f(x) \neq x$ for all $x \in [0, 1]$ and conclude that L is open in [0, 1] and that $L \neq [0, 1]$.
- (5) Conclude from this, or otherwise, that there must in fact be a point $x \in [0, 1]$ such that f(x) = x.

I found the wording of this question a bit confusing.

- Solution. (1) If f and g are continuous then so is $c_1 f + c_2 g$ for any constants and x is continuous directly from the definition, so g(x) = f(x) - x is continuous.
 - (2) By definition, $L = \{x; g(x) \le 0\} = g^{-1}([-\infty, 0])$ is the inverse image of a closed set, hence is closed. Similarly the second set is $g^{-1}((-\infty, 0))$ so is the inverse image of an open set under a continuous map, so is open in [0, 1].
 - (3) Since $g(1) = f(1) 1 \le 0, 1 \in L$.
 - (4) If $f(x) \neq x$ for all $x \in [0,1]$ then $g(x) \neq 0$ for all $x \in [0,1]$ and hence $L = g^{-1}((-\infty,0))$ is open in [0,1]. Thus L is both open and closed and is non-empty so L = [0,1]. However, $g(0) = f(1) 0 \geq 0$ so this is not possible and $L \neq [0,1]$.

(5) Thus $f(x) \neq x$ for all $x \in [0, 1]$ is not possible, so there must exist a point $x \in [0, 1]$ with f(x) = x.

Problem 3

Consider the function

$$f(x) = \frac{-x(x+1)(x-100)}{x^{44} + x^{34} + 1}$$

for $x \in [0, 100]$.

- (1) Explain why f has derivatives of all orders.
- (2) Compute f'(0).
- (3) Show that there exists $\epsilon > 0$ such that f(x) > 0 for $0 < x < \epsilon$.
- (4) Show that there must exist a point x with f'(x) = 0 and 0 < x < 100.
- Solution. (1) Polynomials are infinitely differentiable and the quotient p/q of two infinitely differentiable functions is infinitely differentiable on any interval on which $q \neq 0$. Since $x^{44} + x^{34} + 1 > 0$ for $x \in \mathbb{R}$ it follows that f = p/q is infinitely differentiable on \mathbb{R} .
 - (2) Since $f'(0) = \frac{p'(0)q(0) f(0)q'(0)}{q^2(0)}$ and p(0) = 0, p'(0) = 100, q(0) = 1, q'(0) = 0 it follows that f'(0) = 100.
 - (3) Since f'(x) is continuous, there exists $\epsilon > 0$ such that f'(x) > 0 if $x \in [0, \epsilon)$. By the mean valued theorem for $x \in (0, \epsilon)$,

$$f(x) = xf'(y), \ y \in (0,\epsilon) \Longrightarrow f(x) > 0.$$

(4) From the form of f, f(100) = 0 so, again by the mean value theorem

$$f(100) - f(0) = 0 = 100f'(x)$$

for some $x \in (0, 100)$.

Problem 4

If $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ are two functions which are continuous at 0, show that the function

$$h(x) = \max\{f(x), g(x)\}, \ x \in \mathbb{R}$$

is also continuous at 0.

Solution. Either h(0) = f(0) or h(0) = g(0) (or both). Since h is unchanged if we exchange f and g we may assume that h(0) = f(0).

If $g(0) \neq f(0)$ then g(0) < f(0). By the continuity of f and g, given $\epsilon > 0$ there exists $\delta_1 > 0$ and $\delta_2 > 0$ such that

 $|x| < \delta_1 \Longrightarrow |f(x) - f(0)| < \epsilon, \ |x| < \delta_2 \Longrightarrow |g(x) - g(0)| < \epsilon.$

Taking $\delta = \min(\delta_1, \delta_2)$ and $\epsilon < \frac{1}{2}(f(0) - g(0))$ gives both $g(x) \le g(0) + \frac{1}{2}\epsilon$ and $f(x) \ge f(0) - \frac{1}{2}\epsilon \ge g(x)$ on (δ, δ) so h(x) = f(x) is continuous at 0.

On the other hand if g(0) = f(0) then taking $\delta = \min(\delta_1, \delta_2)$ means that $f(x), g(x) \in (h(0) - \epsilon, h(0) + \epsilon)$ so $|h(x) - h(0)| < \epsilon$ and again the continuity of h follows.

 $\mathbf{2}$