18.100B, FALL 2002, HOMEWORK 9

Due in 2-251, by Noon, Tuesday November 26
Rudin:

(1)

3)

Chapter 6, Problem 12

Proof. Suppose that f € R(«), let C' > 0 be such that |f(z)] < C for all
x € [a,b]. Given € > 0 there exists a partition P of [a, b] such that

n
U(f,a,P)— L(f,, P) = Z(O&(l‘l) —a(r;1))(M; —my) < €2/2C

i=1
where M; and m; are the supremum and infimum of f over [z;_1, z;]. Con-
sider the function given in the hint:
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Note that the value at ¢t = x; is independent of choice even if there are two
intervals of which it is an end point. On [z;_1, z;], ¢ is continuous since it is
linear there and it is continuous at each x;, hence is continuous everywhere.
On [z;_1,z;], g takes values in [m;, M;] since its maximum and minimum
occur at the ends (it is linear) and these are values of f. Since f takes values
in the same interval it follows that f — g takes values in [m; — M;, M; —m;].
Thus

[f(x) = g(@)]* < [M; —mi|* < 20(M; — m;) on iy, a4].

Estimating the integral on each segment of the partition we see that

[ 1#@) = gPda <20 Y (alm) — alein) (44 = m) <

il
which implies that ||f — g[]2 < e. O
Chapter 6, Problem 15
Solution. By assumption f is real and continuously differentiable on [a, b]

hence so is F(z) = xf%(x). This has derivative f2(x) + 2z f(z)f'(x) so by
the fundamental theorem of calculus

b
/ (f2(2) + 201 (2) ' (x))dx = F(b) — F(a) =0
since f(a) = f(b) =0. Thus

b b
/xf(m)f/(x)dx:f%/ f2(x)d:£:f%.

By Schwarz inequality
b 2 b b
3= ( / xf(af)f’(x)da?) < [r@Pds: [ f s,

Chapter 7, Problem 2



Proof. 1f f,, and g, converge uniformly on a set E then they are uniformly
Cauchy. Hence given € > 0 there exist N’ and N” such that

n,m > N = |fo(2)—fm(z)| < €/2, n,m > N" = |gp(x)—gm(z)| < €/2Vx € E.

Taking N = max(N’, N”) we see that
n,m >N = |(fn(x) + gn(2)) = (fm(2) + gm(2))| <eV2z €FE

S0 fn + gn is uniformly Cauchy and hence uniformly convergent.
If both f,, and g, are uniformly bounded, with |f,(z)|, |g.(z)| < M for
all x € E and all n then

|fn(x)gn(x) - fm(x)gm('r” <

|fn(x)gn(x) - fn(x)gm(x” + |fn($)gm(x) - fm(x)gm(x” < Me

if n,m > N showing that f,,g, is uniformly Cauchy and hence uniformly
convergent.

O

Chapter 7, Problem 6

Proof. We may write the series as the sum of Z(fl)”ﬁ and Y (—1)1.
n

n2
n
The second series converges uniformly as a series of functions in z since it
converges and does not depend on z. The first series converges uniformly

on any bounded interval, using Theorem 7.10 and the convergence of > #
n
It follows that the sum of the series converges uniformly using the triangle

inequality
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Chapter 7, Problem 8

Proof. Tt 3" |e,| converges then for any m > n,
n

1> eill@—z)l <Y lejl Vo e ab]
j=n

j=n

By Theorem 7.10, it follows that the series converges uniformly on [a, b].
Given € > 0 there exists N such that

| Z c;I(y —zj;)| <e€/3Yye€[a,b].
JjzN
If # # @, for any n then it follows that >~ ¢;I(y — ;) is continuous at x,
so there exists 6 > 0 such that =
|z —y| <6 = | chl(xfzj)f Z c;il(y —xj)| <e/3.

J<N J<N



Then we see that, if x — y| < d,

f(@) = F@) <) eil(@—m) = > eIy — ;)]

J<N J<N
HIY el —)+] > lly— ;)| <e.
J>N J>N

Thus, f is continuous at x.
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