
18.100B, Fall 2002, Homework 6

Due in 2-251, by Noon, Tuesday October 29. Rudin:
(1) Chapter 4, Problem 20

If E is a nonempty subset of a metric space X, define the distance from
x ∈ X to E by

ρE(x) = inf
z∈E

d(x, z).

(a) Prove that ρE(x) = 0 if and only if x ∈ Ē.
(b) Prove that ρE is uniformly continuous on X by showing that

|ρE(x)− ρE(y)| ≤ d(x, y)

for all x, y ∈ X.

Solution. (a) If ρE(x) = 0 then there exists a sequence zn ∈ E such that
d(x, zn) → 0. This implies zn → x and hence x ∈ Ē. Conversely if
x ∈ Ē then either x ∈ E, in which case ρE(x) = 0, or else x ∈ E′, so
there exists a sequence zn ∈ E with zn → x. This implies d(x, zn) → 0
so ρE(x) = 0.

(b) If x, y ∈ X then for any z ∈ E, using the triangle inequality

ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Taking the infimum over z ∈ E on the right-hand side shows that
ρE(x) − ρE(y) ≤ d(x, y). Interchanging the roles of x and y gives the
desired estimate

|ρE(x)− ρE(y)| ≤ d(x, y).

This proves the uniform continuity of ρE , since given ε > 0, d(x, y) < ε
implies |ρE(x)− ρE(y)| < ε.

�

(2) Chapter 4, Problem 23
A real valued function defined on (a, b) is said to be convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

whenever x, y ∈ (a, b) and λ ∈ (0, 1). Prove that every convex function
is continuous. Prove that every increasing convex function of a convex
function is convex. If f is convex on (a, b) and if a < s < t < u < b show
that

f(t)− f(s)
t− s

≤ f(u)− f(s)
u− s

≤ f(u)− f(t)
u− t

.

Solution. (c) We do the third part first. Since a < s < t < u < b,
t = λs + (1− λ)u with λ = u−t

u−s ∈ (0, 1). Thus

f(t) ≤ u− t

u− s
f(s) +

t− s

u− s
f(u) =⇒ (t− s)f(u) + (u− t)f(s)− (u− s)f(t) ≥ 0.

This can be rewritten as (t− s)(f(u)− f(s))− (u− s)(f(t)− f(s)) ≥ 0
and (u − s)(f(u) − f(t)) − (u − t)(f(u) − f(s)) ≥ 0 proving the two
desired inequalities:

(1)
f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

1
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(a) Given x ∈ (a, b) choose δ > 0 so that [x − δ, x + δ] ⊂ (a, b). Now,
consider a point z ∈ (x − δ, x) applying the second inequality in (1)
gives the first inequality in

(2)
f(x)− f(x− δ)

δ
≤ f(z)− f(x)

z − x
≤ f(x + δ)− f(x)

δ
.

Applying the outer inequality in (1) to the three points z < x < x + δ
gives the second inequality. Now consider the case x < z < x + δ.
Then the first inequality in (2) follows from the outer inequality in (1)
applied to the three points x− δ, x, z and the second inequality in (2)
follows from the first inequality in (1) applied to x, z, x + δ. Now (2)
implies that

|f(x)− f(z)| ≤ C|x− z| ∀ z ∈ (x− δ, x + δ)

and hence proves the continuity of f (in fact the Lipschitz continuity).
(c) Let g be convex and increasing on (c, d) and f be convex on (a, b)

with f(a, b) ⊂ (c, d). Then set h(x) = g(f(x)). Since f is convex,
A = f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) = B and since g is
increasing, g(A) ≤ g(B) so

h(λx+(1−λ)y) = g(f(λx+(1−λ)y) ≤ g(λf(x)+(1−λ)f(y) ≤ λh(x)+(1−λ)h(y)

proving the convexity of h.
�

(3) Chapter 4, Problem 26
Suppose X, Y and Z are metric spaces and Y is compact. Let f : X −→

Y and let g : Y −→ Z be continuous and 1-1 and put h(x) = g(f(x)).
Prove that f is uniformly continuous if h is uniformly continuous. Show
that compactness of Y cannot be omitted from the hypotheses, even when
X and Z are compact.

Solution. Consider the subset Z ′ = g(Y ) as a metric space with the metric
induced from Z. Then g : Y −→ Z ′ is 1-1 and onto. Since Y is compact,
so is Z ′ and by a result from class, the inverse of g is continuous. Thus,
again by a result from class, both g and g−1 : Z ′ −→ Y are uniformly
continuous. Note that the composite of two uniformly continuous maps is
uniformly continuous1. Applying this to f = g−1 ◦ h, h = g ◦ f shows that
the uniform continuity of h implies that of f.

As a counterexample to the result when the compactness of Y is dropped,
take X = Z = [0, 1] and Y = [0, 1

2 )∪ [1, 3
2 ]. Let f be the discontinuous map

f(x) = x for 0 ≤ x < 1
2 , f(x) = x + 1

2 for 1
2 ≤ x ≤ 1. Then let g be the

continuous map g(y) = y for 0 ≤ y < 1
2 and g(y) = y − 1

2 for 1 ≤ y ≤ 3
2 .

Observe that g is uniformly continuous, since |g(y)− g(y′)| ≤ |y − y′|. The
composite map is the identity on [0, 1], so uniformly continuous, but f is
not even continuous (of course if it was continuous it would be uniformly
continuous since [0, 1] is compact).

1If the maps are f : X −→ Y and g : Y −→ Z, both uniformly continuous then given ε > 0

there exists η > 0 sucht that dY (y, y′) < η implies dZ(g(y), g(y′)) < ε. Then from the uniform
continuity of f there exists δ > 0 such that dX(x, x′) < δ impies dY (f(x), f(x′)) < γ and hence

d(g(f(x)), g(f(x′)) < ε. But this is the uniform continuity of h = g ◦ f.
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(4) Chapter 5, Problem 1
Let f be defined for all real x and suppose that

|f(x)− f(y)| ≤ (x− y)2 ∀ x, u ∈ R.

Prove that f is constant.

Solution. Certainly f is differentiable at each point with derivative zero,
since

lim
0 6=h→0

f(x + h)− f(x)
h

= lim
0 6=h→0

h = 0.

By the mean value theorem it follows that f is constant. �

(5) Chapter 5, Problem 2
Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b)

and let g be its inverse function. Prove that g is differentiable and

g′(f(x)) =
1

f ′(x)
∀ x ∈ (a, b).

Proof. By the mean value theorem, if y > x are two points in (a, b) then
there exists z ∈ (x, y) such that f(y) − f(x) = (y − x)f ′(z) > 0. Thus f
is stricly increasing. It follows that it is 1− 1 as a map onto the (possibly
infinite) interval (c, d) = (inf f, sup f). Thus it has an inverse, g determined
by the fact that g(y) = x if f(x) = y. �
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