18.100B, FALL 2002, HOMEWORK 5

Due in 2-251, by Noon, Tuesday October 8. Rudin:

(1)

Chapter 3, Problem 1

Solution: The sequence is supposed to be in R™. We use the triangle
inequality in the form [b| = [b — a + a| < |a — b| + |a| which implies that
|b| — |a| < |a — b|. Reversing the roles of a and b we also see that |a| — |b] <
|a —b] and so ||a| — |b]] < |a — b|.

If {s,} converges to s then given € > 0 there exists N such that n > N
implies |s, —s| < €. By the triangle inequality ||s,|—|s|| < |sn —s] so {|sn|}
converges to |s|.

Chapter 3, Problem 20

Solution: Let {p,} be a Cauchy sequence in a metric space X. By as-
sumption, some subsequence {pn(k)} converges to p € X. Thus, given € > 0
there exits K such that k& > K implies that d(p, p,) < €/2 for all k > K.
By the Cauchy condition, given € > 0 there exists M such that n,m > M
implies d(zy, Tm) < €/2. Now, consider N = n(l) for some ! > K such that
n(l) > M, which exists since n(k) — oo with k. For this choice,

n > N = d(pn,p) < d(pn, Pu@y) + d(Pnq),p) < €

shows that {p,} converges to p.
Chapter 2, Problem 21

Note that the problem should say that {E,} is a sequence of closed,
bounded and non-empty sets in a complete metric space with E,, D E, 11
and if lim,, o diam(E,) = 0, where diam(E) = (sup, ,cx d(p,q)), then
Mo~ E, consists of exactly one point.

Solution: If p,q € N, £y thenp, ¢ € E,, for alln,so d(p,q) < diam(E,) —
0 with n, so d(p,q) = 0 and there can be at most one point in the intersec-
tion. So, suppose {p,} is any sequence with p,, € E,. By the convergence
of diam(E,,) to 0, given € > 0 theren exists N such that n > N implies
diam(E,) < € for all n > N. Since E,, C Ex if m > N it follows that
d(pn, pm) < diam(Ey) < € if n,m > N and hence the sequence is Cauchy.
The assumption that X is complete implies that this sequence converges to
a limit p. Since p, € Ey of n > N and each Ey is closed, p € En for all
N and hence p € (), E, which therefore consists of exactly one point.
Chapter 2, Problem 22.

Solution: Let {G,} be a sequence of dense open subsets of a complete
metric space X. We can assume that X # () otherwise the question is trivial.
We construct a sequence of open balls Ey = B(pg,er) C Gk, € > 0 with
B(pg,2€) C Gy N E_1 for all k > 1. Choose €¢; > 0 and a point p; € Gy
such that E; = B(p1,2¢1) C Gy; this is possible since Ey # () is open. From
the density of G5 in X, py is a limit point of G5, so there exists p, € F1NGa
and hence e > 0 such that B(ps,€2) C E1 N Gsy. Now, proceed in this way,
supposing we have chosen p; and ¢; > 0 for [ = 1,...,k — 1 such that with
E; = B(pi,€¢) we have B(p;,2¢,) C Ei_1 NGy for each | = 2,...,k — 1.
Then, from the density of Gj in X we can choose pr € Er_1 N Gy such
that B(pg,2€;) C Er—1 N Gi. The closed set {p;d(p,pi} < €} satisfies
the conditions of Problem 21; they are non-empty, and decreasing, in fact
B(pk,2¢ex) C B(pg—1,€x—1) implies 2¢x < ex—1 so diam(Ey) — 0 as k — oo.
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Thus there is a point in (), Ej, and hence in (), Gi. In fact we could do this
with the center of the first ball arbitrarily close to a given point p € X, and
with €; > 0 arbitrarily small, so it follows that [, G is dense (of course it
need not be open).

This is Baire’s theorem, the intersection of a countable set of open dense
subsets of a complete metric space is dense.
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