
18.100B, Fall 2002, Homework 5

Due in 2-251, by Noon, Tuesday October 8. Rudin:
(1) Chapter 3, Problem 1

Solution: The sequence is supposed to be in Rn. We use the triangle
inequality in the form |b| = |b − a + a| ≤ |a − b| + |a| which implies that
|b| − |a| ≤ |a− b|. Reversing the roles of a and b we also see that |a| − |b| ≤
|a− b| and so ||a| − |b|| ≤ |a− b|.

If {sn} converges to s then given ε > 0 there exists N such that n > N
implies |sn−s| < ε. By the triangle inequality ||sn|−|s|| ≤ |sn−s| so {|sn|}
converges to |s|.

(2) Chapter 3, Problem 20
Solution: Let {pn} be a Cauchy sequence in a metric space X. By as-

sumption, some subsequence {pn(k)} converges to p ∈ X. Thus, given ε > 0
there exits K such that k > K implies that d(p, pn(k) < ε/2 for all k > K.
By the Cauchy condition, given ε > 0 there exists M such that n, m > M
implies d(xn, xm) < ε/2. Now, consider N = n(l) for some l ≥ K such that
n(l) > M, which exists since n(k) →∞ with k. For this choice,

n > N =⇒ d(pn, p) ≤ d(pn, pn(l)) + d(pn(l), p) < ε

shows that {pn} converges to p.
(3) Chapter 2, Problem 21

Note that the problem should say that {En} is a sequence of closed,
bounded and non-empty sets in a complete metric space with En ⊃ En+1

and if limn→∞ diam(En) = 0, where diam(E) =
(
supp,q∈E d(p, q)

)
, then⋂∞

n=1 En consists of exactly one point.
Solution: If p, q ∈

⋂
n En then p, q ∈ En for all n, so d(p, q) ≤ diam(En) →

0 with n, so d(p, q) = 0 and there can be at most one point in the intersec-
tion. So, suppose {pn} is any sequence with pn ∈ En. By the convergence
of diam(En) to 0, given ε > 0 theren exists N such that n > N implies
diam(En) < ε for all n > N. Since Em ⊂ EN if m ≥ N it follows that
d(pn, pm) ≤ diam(EN ) < ε if n, m > N and hence the sequence is Cauchy.
The assumption that X is complete implies that this sequence converges to
a limit p. Since pn ∈ EN of n > N and each EN is closed, p ∈ EN for all
N and hence p ∈

⋂
n En which therefore consists of exactly one point.

(4) Chapter 2, Problem 22.
Solution: Let {Gn} be a sequence of dense open subsets of a complete

metric space X. We can assume that X 6= ∅ otherwise the question is trivial.
We construct a sequence of open balls Ek = B(pk, εk) ⊂ Gk, εk > 0 with
B(pk, 2εk) ⊂ Gk ∩ Ek−1 for all k > 1. Choose ε1 > 0 and a point p1 ∈ G1

such that E1 = B(p1, 2ε1) ⊂ G1; this is possible since E1 6= ∅ is open. From
the density of G2 in X, p1 is a limit point of G2, so there exists p2 ∈ E1∩G2

and hence ε2 > 0 such that B(p2, ε2) ⊂ E1 ∩G2. Now, proceed in this way,
supposing we have chosen pl and εl > 0 for l = 1, . . . , k − 1 such that with
El = B(pl, εl) we have B(pl, 2εl) ⊂ El−1 ∩ Gl for each l = 2, . . . , k − 1.
Then, from the density of Gk in X we can choose pk ∈ Ek−1 ∩ Gk such
that B(pk, 2εk) ⊂ Ek−1 ∩ Gk. The closed set {p; d(p, pl} ≤ εl} satisfies
the conditions of Problem 21; they are non-empty, and decreasing, in fact
B(pk, 2εk) ⊂ B(pk−1, εk−1) implies 2εk ≤ εk−1 so diam(Ek) → 0 as k →∞.
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Thus there is a point in
⋂

k Ek, and hence in
⋂

k Gk. In fact we could do this
with the center of the first ball arbitrarily close to a given point p ∈ X, and
with ε1 > 0 arbitrarily small, so it follows that

⋂
k Gk is dense (of course it

need not be open).
This is Baire’s theorem, the intersection of a countable set of open dense

subsets of a complete metric space is dense.
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