
18.100B, Fall 2002, Homework 4, Solutions

Was due in 2-251, by Noon, Tuesday October 1. Rudin:
(1) Chapter 2, Problem 22

Let Qk ⊂ Rk be the subset of points with rational coefficients. This is
countable, as the Cartesian product of a finite number of countable sets.
Suppose that x = (x1, . . . , xk) ∈ Rk. By the density of the rationals in the
real numbers, given ε > 0 there exists yi ∈ Qk such that |xi − yi| < ε/k,
i = 1, . . . , k. Thus if y = (y1, y2, . . . , yk) then

|x− y| ≤
√

k maxk
i=1 |xi − yi| < ε

shows the density of Qk in Rk. Thus Rk is separable.
(2) Chapter 2, Problem 23

Given a separable metric space X, let Y ⊂ X be a countable dense
subset. The product A = Y × Q is countable. Let {Ua}, a ∈ A, be the
collection of open balls with center from Y and rational radius. If V ⊂ X is
open then for each point p ∈ V there exists r > 0 such that B(p, r) ⊂ V. By
the density of Q in X there exists y ∈ Q such that p ∈ B(y, r/2). Moreover
there exists q ∈ Q with r/2 < q < r. Then x ∈ B(y, q). Thus each point of
V is in an element of one of the Ua’s which is contained in V, so

V =
⋃

Ua⊂V

Ua.

It follows that the {Ua}a∈A form a base of X (actually now more usually
called an open basis).

(3) Chapter 2, Problem 24
By assumption X is a metric space in which every infinite set has a limit

point.
For each positive integer n choose points x1(n), x2(n), . . . successively

with the property that d(xj(n), xk(n)) ≥ 1/n for k < j. After a finite
number of steps no futher choice is possible. Indeed, if there were an
infinite set of points E satisfying d(x, x′) ≥ 1/n for all x 6= x′ in E then E
could have no limit point – since a limit point q ∈ X would have to satify
d(q, pi) < 1/2n for an infinite number of (different) pi ∈ E and this would
imply that d(p1, p2) ≤ d(p1, q) + d(q, p2) < 1/n which is a contradiction.
Let Y ⊂ X be the countable subset, as a countable union of finite sets,
consisting of all the xj(n), for all n. Then Y is dense in X. To see this,
given p ∈ X and ε > 0 choose n > 1/ε. If p = xj(n) for some j then it is in
Y. If not then for some j, d(p, xj(n)) < 1/n, otherwise it would be possible
to choose another xj(n) contradicting the fact that we have chosen as many
as possible. Then d(p, q) < ε for some q ∈ Y which is therefore dense and
X is therefore separable.

(4) Chapter 2, Problem 26.
By assumption, X is a metric space in which every infinite subset has

a limit point. By the problems above it is separable, and hence has a
countable open basis, {Ui}. Let {Va}a∈A be an arbitrary open cover of X.
Each Va is a union of Uj ’s by the definition of an open basis. For each j
such that Uj is in one of these unions, choose a Vaj

which contains it. Then
for every b ∈ A, Vb must be contained in a union of the Uaj

’s, hence in the
1



2

union of the Vaj
’s which therefore form a countable subcover of the original

open cover Va. Consider the successive open sets
N⋃

i=1

Vai
.

If one of these contains X then we have found a finite subcover of the Va’s.
So, suppose to the contrary that

FN = X \
N⋃

i=1

Vai
6= ∅ ∀ N.

The FN ’s are decreasing as N increases. Let E ⊂ X be a set which contains
one point from each FN . It must be an infinite set, since otherwise some
fixed point would be in FN for arbitrary large, hence all, N but

(1)
⋂

N∈N
FN = ∅

since together all the Vai
do cover X. By the assumed property of X, E

must have a limit point p. For each N, all but finitely many points of E lie
in FN , so p must be a limit point of FN for all N, but each FN is closed so
this would mean p ∈ FN for all N, contradicting (1).
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