
TOPIC 1

RICHARD MELROSE

Abstract.

Overview, one and two-dimensional manifolds. Basics of Riemann surfaces

0.1. Overview. In this course I want to use the Riemann Moduli spaces as a
central theme to introduce many of the methods of use in differential geometry,
differential analysis, differential topology and so on; I do expect you to be able to
differentiate!

So, what is the Riemann moduli space of a Riemann surface S with n ‘marked
points’ forming a set P ⊂ S :

(1)

M(S) =Mg = J (S)/Dff+(S) (unmarked),

M(S, P ) =Mg,n =J (S)/Dff+(S;P ), #(P ) = n,

Dff+(S;P ) = {F ∈ Dff+(S);F (p) = p ∀ p ∈ P}.

To understand this definition we first have to comes to grips with S. First S is a
compact two dimensional oriented manifold. The notation ‘g’ is for the genus of S,
g ∈ N0 which actually determines S up to diffeomorphism. The diffeomorphisms
of a compact manifold form an infinte-dimensional group Dff(S)). The labelling of
oriented surfaces by the genus is a form of the uniformization theorem. Then J (S)
is the (infinite-dimensional manifold) of complex structures on S, Dff+(S) ⊂ Dff(S)
is the subgroup of index 2 of orientation-preserving diffeomorphisms. Further re-
stricting, Dff+(S;P ) ⊂ Dff+(S) is the subgroup of diffeomorphisms which fix each
point of P. Not totally surprisingly, this has real codimension 2n in Dff+(S) where
n = #(P ) is the number of points in P, although even the precise meaning of this
is for the moment unclear.

So, what is Mg,n like? Well, it only makes good sense in the ‘stable’ range
2g + n > 2 which is actually a condition on the Euler characteristic of S – in real
money this means n ≥ 3 if g = 0 (the sphere) and n ≥ 1 if g = 1 (the torus) for
the surfaces with g ≥ 2 there is no restriction. Then for instance M0,3 is a point
and M0,4 is the 2-sphere with three points removed. The space M1,1 is what you
would normally think of as the ‘moduli space’. As we shall see Mg,n is ‘almost’ a
complex manifold of (complex) dimension 3g − 3 + n where the almost is because
it is an orbifold – no big deal but we need to sort it out – and a stack, into which I
will not go so deeply but you will see what this means too. Basically it is smooth;
however it is non-compact, except for M0,3, and that is something we really do

need to get into – namely we need to discuss its compactification Mg,n. (This is
standard notation for the Delign-Mumford compactification, although the ‘bar’ was
not a very good choice since it can get confused with complex conjugation to which
it is not related.)
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The space Mg,n is the (coarse) moduli space of complex structures on an n-
pointed Riemann surface of genus g.

We will have a lot more to say about these spaces and the concepts here that I
have left undefined. First we need to get to the point that everyone can honestly
say they understand everything in the definition. We are probably not there yet.

0.2. Brief version of first lecture. Let S be a compact oriented 2-manifold S.
A conformal structure on S is given by a metric-up-to-conformal-equivalence. That
is, a conformal structure is just a class of metrics of the form e2φg where g is some
fixed metric and φ ∈ C∞(S;R) is an arbitrary; thus e2φ is actually an arbitrary
strictly positive smooth function on S. The reason such a conformal structure is
interesting in this case is it is the same as an almost complex structure and hence
the same thing as a complex structure. Initially we just see that it is the same as
an almost complex structure. I will continue to distinguish between complex and
almost complex structures until we see that they are the same.

Definition 1. An almost complex structure is a smooth real bundle map

(2) j : TS −→ TS

(so mapping TsS to TsS linearly for each s ∈ S with smooth dependence on s) such
that j2 = − Id .

So I am assuming you know about the tangent bundle and bundle maps – see the
expanded discussion below.

Such a map is a bundle isomorphism since −j = j−1 and it turns each TsS into
a complex vector space – we already have linearity over R and if you define ‘fibre
multiplication by i =

√
−1’ to be js then this gives the axioms of a 1-D complex

vector space, a complex line if you prefer. In 2 dimensions there is no integrability
condition (as there is in higher dimensions) and giving an almost complex structure
is equivalent to giving a complex structure, in the sense of a covering by complex
coordinate systems. It is still necessary to show this, to see that there are auto-
matically local complex coordinates (and that these are compatible on overlaps).
Namely, j induces a dual isomorphism of T ∗S so this is complex too and then we
need to find real coordinates x and y such that

(3) j(dx) = dy, j(dy) = −dx everywhere in the coordinate patch.

This is not completely obvious! It is precisely what we need to prove to identify
almost and ‘actual’ complex structures.

The relationship between almost complex structures and conformal stuctures
stated above is obtained by noting that the choice of a metric induces an action of
SO(2) on TsS for each s – these are the orientation-preserving linear maps which
fix the metric. If we take linear coordinates in TsS in terms of which the metric is
the standard Euclidean metric (which we always can) the elements of SO(2) act as
(counterclockwise) rotations, R(θ), θ ∈ [0, 2π). Then set

(4) Js = R(π/2) on TsS

gives an almost complex structure.
Conversely if we have an almost complex structure and we take any local non-

vanishing real vector field v – a then v, jv determine a metric if we require them to
be orthonormal. You should check that a different choice of v leads to a conformal
metric. It follows that the conformal class of the metric can be recovered from the
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(almost) complex structure. If you prefer, given j we can define a conformal class of
metrics by locally taking any function y1 which has non-vanishing differential and
defining a metric by specifying dy1, j(dy1) as an orthonormal basis of T ∗s S, locally.

So conformal classes of metrics and almost complex structures are one in the
same – and Mg is supposed to be the ‘moduli space’ of these.

It is therefore important to think about what the collection, J (S), of all the
almost complex structures on S is like. To approach this we do a little linear algebra
and think of the almost complex structure in a slightly different way. The linear
space TsS is 2-dimensional over the reals and we can pass to it complexification,
CTsS = C ⊗R TsS just by allowing complex coefficients. This is a complex 2-
dimensional vector space. The reason for doing this is that js at each point is
real but its eigenvalues are necessarily complex, since of course they must be ±i
– so it is necessary to extend to the complexification to ‘see’ these. Each of the
eigenvalues must correspond to a 1-dimensional eigenspace – of necessarily complex
vectors, so the complexification splits at each point, and in fact smoothly, into the
±i eigenspaces:

(5) CTS = V ⊕ V , V = T 1,0S, CT ∗S = V ∗ ⊕ V ∗ = Λ1,0 ⊕ Λ0,1.

In fact TS as a complex (line) bundle is naturally isomorphic to T 1,0S.
Once we choose an almost complex structure and perform the splitting (5) we

can see what the others are like – pointwise and then globally over S. Namely,
each j tensor gives a splitting as in (5) into two complex lines which are conjugate
to each other (note that the complex conjugate is also a complex vector space of
dimension one the ‘bar’ refers to the fact that it is naturally isomorphic to V over
the real numbers but by an antilinear isomorphism)

(6) CTsS = Ws ⊕Ws, Ws ∩Ws = {0}.

This also gives an orientation of TsS which should be the correct one – which means
we cannot exchange Ws and Ws since that would reverse the orientation. So, using
the fixed almost complex struture (5), any other almost complex structure gives a
linear map by applying the decomposition

(7) γ : Vs −→ Vs, v + γ(v) ∈Ws, ∀ v ∈ V s.

Thus the original structure corresponds to γ = 0. Observe that for a 1-dimensional
complex vector space the linear maps as in (7) have a norm. Taking a basis element
e of V s it follows that e is a basis element of Vs and the map is given by a complex
number, γ(e) = λe; change of basis just corresponds to scaling and it follows that
|λ| (but not λ itself) is independent of the choice of e.

Lemma 1. Given one almost complex structure on S corresponding to the decom-
position (5), the space of almost complex structures on a S is identified with the
smooth bundle maps

(8) J (S) = {γ : T 0,1S −→ T 1,0S; |γ|s < 1 ∀ s ∈ S}.

So this tells us what J (S) is – it is an open set in the Fréchet space of bundle
maps as in (8) and hence in particular a Fréchet manifold, but of a very simple
type.

Finally we come to our first theorem. Namely
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Theorem 1 (Isothermal coordinates). 1 For any almost complex structure on S
there exist local coordinate near each point, x and y, in terms of which Λ1,0 is
spanned by dx+ idy = dz, z = x+ iy.

Why ‘isothermal’? Better ask Gauss, but it is a bit late.

Proof. Here is a proof using a black-box (maybe for real if I work out how to do
it in TeX). By this I mean we use a major result which you might or might not
know. As here, I will typically state this in a more general form than needed. At
some point this needs to be discussed properly, but of course I am claiming that
the black box does not depend on the result we are using it to prove. I could try
to proceed strictly linearly but it is unwise to do so.

As a more general aside, the theory of Riemann surfaces was developed before
and, later, to some extent separately from the general theory of manifolds and
differential analysis – using special methods (in this case, Beltrami differentials) that
do not extend easily to higher dimensions. The existence of isothermal coordinates
is an example of this and there are direct proofs which apply to complex vector
fields in two, but not higher, dimensions. I eschew such proofs here! One point of
the course after all is to introduce general results and methods!

If we take a given almost complex structure on S (this does not work in higher
dimensions but see ‘Newlander-Nirenberg’ maybe later) then locally near a given
point s̄ ∈ S, there is a smooth, non-vanishing section of T 0,1S, call it V. This is
a complex vector field on S and what we look for is a solution to the differential
equation

(9) V z = 0, dz(s) 6= 0 z ∈ C∞(O), s̄ ∈ O ⊂ S open.

The black box, in a form that I do plan to discuss later, is:-

Theorem 2. Any (elliptic) Dirac operator (so of order 1), ð, (between sec-
tions of vector bundles) on a manifold is locally solvable in the sense that
each point has a neighbourhood O such that if f is smooth and has support
in some compact subset K b O then there is a smooth solution to

(10) ðu = f in O satisfying ‖u‖Ck+1,α(O) ≤ C‖f‖Ck,α(O).

I will not say much about this at the moment – these are ‘Schauder estimates’
and it can be proved by using Fredholm propeties of global elliptic operators.
I do plan to include this in these notes, but just how much I will do in the
lectures is the sort of thing that I am seeking guidance for. In any case, not
just yet!

In particular I have suppressed the notation for vector bundles etc in (10). The
integers k need to be chosen as does the Hölder exponent 0 < α < 1, (because
even when O and K are fixed the constants depend on them) then there is an open
set O and then once K b O is fixed there is a solution and a constant such that
(10) holds. I am not even going to bother explaining what these Hölder norms
are at the moment, but the Ck,α norm controls (is bigger than) the usual Ck norm
(supremum of first k derivatives) and conversely is controlled by the Ck+1 norm.

1Understood by Gauss for surfaces in three space, proved by Korn and Lichenstein for almost

complex structure in two real dimensions (reference needed). The proof I outline here is due to
Deturck and Kazdan (reference needed).
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Since we are thinking of an operator – a vector field – on functions here everything
is much simpler than the general theorem. All we really need for the moment is
the existence and the (somewhat misleading) estimate for a solution

(11) ‖u‖C1(O) ≤ C‖f‖C1(O).

Of course applying the theorem requires us, apart from having some blind faith,
to check that it is ‘elliptic’ and ‘Dirac’ – neight of which is not yet defined. It is!
A vector field cannot be elliptic in dimensions greater than two, and ellipticity in
dimension two amounts to the real and imaginary parts being linearly independent.

To use this black box we go back to the equation (9) that we want to solve and
work near some point. Take local coordinates y1, y2 based at the point and such
that the conformal structure corresponds to a metric dy2

1 + dy2
2 + y1g1 + y2g2 as we

can arrange by a linear change of coordinates. Then a smooth section V of T 0,1

can be written

(12) V = a(y1, y2)(∂y1 + i∂y2) + y1V1 + y2V2, a 6= 0, Vi smooth.

Since we only want to solve V z = 0 we can divide by a – changing the error terms.
Now, we proceed in ‘formal power series’. Try to choose

(13) Zk = y1 + iy2 +
∑

0<|α|≤k+1,

bαy
α s.t. V Zk = O(|y|k+2).

Here I am using multiindex notation for polynomials, α = (α1, α2) ∈ N2
0, |α| =

α1 +α2, y
α = yα1

1 yα2
2 ,and we want the error to vanish to order k+1 at the origin –

our chosen point. For k = 0 we have this already. To proceed inductively, suppose
we have found a Zj such that

(14) V Zj =
∑
|β|=j+1

cαy
β +O(|y|j+2)

where the leading term in the Taylor series has been made explicit. In fact we can
introduce the complex variable ζ = y1 + iy2 and write the leading part of the error
as ∑

0≤l≤j+1

dlζ
lζ
j+1−l

for some other constants. Then we want to add a homogeneous polynomial of
degree j + 2 to Zj to give Zj+1. Since

(15) V (ζjζ
j+2−l

) = 2(j + 2− l)ζjζj+2−l
+O(|y|j+3)

it suffices to take

(16) Zj+1 = Zj −
∑

0≤l≤j+1

dl
1

2(j + 2− l)
ζlζ

j+2−l
.

We really only need (13) with k = 1. If O′ is the coordinate neighbourhood,
choose φ ∈ C∞c (O′) (undefined notation should always appear in the expanded
version of the lecture – this is the space of smooth functions each of which vanishes
outside a compact subset of O′) so

(17) f = φV Z2 =
∑
|α|=2

yαφψα(y1, y2), ψα ∈ C∞(O′).
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We will choose a sequence φn of ‘cut-off’ functions. Take χ ∈ C∞c (O′), 0 ≤ χ ≤ 1,
χ = 1 in |y| < ε for some ε > 0, χ = 0 in |y| > 2ε and set

(18) φn(y1, y2) = χ(ny1, ny2), fn = φnV Z2 =
∑
|α|=2

yαφnψα

The C1 norm of fn is the sum of the three terms

(19) sup |fn| ≤ Cn−2, sup |∂y1fn| ≤ Cn−1, sup |∂yyfn| ≤ Cn−1

where the vanishing as n increases comes from the fact that the support is in
|y| < ε/n and there is at least one factor of |y| ‘left over’. Of course you could get
faster vanishing by increasing j in the first place.

Now we apply Theorem 2 and the estimate in the form (11) on the solution to
find un ∈ C∞(O) (where O ⊂ O′ may be a smaller neighbourhood) such that

(20) V un = fn, ‖un‖C1(O) ≤ C‖fn‖C1(O) ≤ Cn−1.

Then set z = Z2 − un where n is choses so large that ‖un‖C1 ≤ 1
2 . The derivatives

of Z2 at the origin of the coordinates are of size 1 so it follows that

(21) V z = 0 in |y| < δ < ε/n, |∂yiz(0)| 6= 0, i = 1, 2.

Thus we win. �

This allows us to introduce complex coordinates x = Re(z), y = Im(z) – these
are coordinates by the inverse function theorm – and z = x+ iy. It follows in turn
that

(22) V = a(∂x + i∂y), a 6= 0 near 0

where we can again drop the factor of a. Now the only functions in the null space
of V near 0 are the holomorphic functions of z. Maybe this requires a proof.

0.3. Riemann surfaces and manifolds. In the second part of each lecture (really
‘topic’ since I do not anticipate these corresponding to actual lectures) I/we will
add some more detail and context to the briefer version, as above.

So, to the basic setup for Riemann surfaces. The ‘collection’ of two-dimensional
compact manifolds is still quite manageable. Namely for each non-negative integer
g ∈ N0 there is just one oriented compact surface (=2D manifold) up to (orientation-
preserving) diffeomorphism. There are lots of ways to prove this – but I will not
try to give an elementary ‘cut and paste’ proof but later use some more general
machinery to prove it. Lets explore some of the (remarkable) things that are special
to the two-dimensional case and proceed a bit later to examples of each ‘genus’ once
we have defined it and then approach the uniqueness problem.

Perhaps we should have the explicit definition of a manifold here.
From the definition of a manifold (which of course arose from trying to treat

Riemann surfaces systematically but that is a long time ago) we know we can cover
S by coordinate charts. I will typically use variables y1 and y2, but x and y would
be more conventional. In fact there is a finite cover by such coordinate patches

(23) F : S ⊃ U −→ U ′ ⊂ R2
y1,y2 .

The definition means that S comes equipped with a topology, in which U is an
open set, U ′ ⊂ R2 is required to be open and F to be a homeomorphism. The
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smooth structure on S – part of the definition of a (C∞) manifold is that for two
such coordinate patches Fi, i = 1, 2, such that U1 ∩ U2 6= ∅ the map

(24) F2F
−1
1 : F1(U1 ∩ U2) −→ F2(U1 ∩ U2) is a diffeomorphism

which just means that the corresponing pull-back map (F2F
−1
1 )∗ from functions on

F2(U1 ∩ U2) to functions on F1(U1 ∩ U2) is a bijection from C∞(F2(U1 ∩ U2)) to
C∞(F1(U1 ∩ U2)).

This allows us, as on any manifold, to define

(25) C∞(S) =

{u : S −→ C; (F−1)∗(u
∣∣
U

) ∈ C∞(U ′); for all coordinate charts F : U −→ U ′}.

To show that a function f : S −→ C is in C∞(S) it suffices to check the condition
in (25) for a cover of S by coordinate charts.

The space C∞(S) is a ring and is actually a ‘C∞ algebra’ – meaning if you take k
real-valued elements and insert them into a smooth function on Rk you get another
element). The real and imaginary parts of a function are smooth so C∞(S;R) is a
vector space over the reals such that

(26) C∞(S) = C∞(S;R)⊗ C.

A map between manifolds F : S1 −→ S2 is smooth if and only if

(27) F ∗ : C∞(S2) −→ C∞(S1).

The space C∞(S) is the space of global sections of a sheaf. Namely, any open
set O ⊂ S is itself a smooth 2-dimensional manifold and so C∞(O) is well-defined.
There is a restriction map

(28)
∣∣
OO′ : C∞(O′) −→ C∞(O), O ⊂ O′ ⊂ S open

which is ‘functorial’ under composition (so the identity when O = O′ and composes
properly for triples O′′ ⊂ O′ ⊂ O). That makes ‘it’ (meaning the functor O 7−→
C∞(O) of open sets into abelian rings) a presheaf. It is a sheaf because one can
assemble elements. If u ∈ C∞(O) and u′ ∈ C∞(O′) are such that

(29)

u
∣∣
O∩O′ = u′

∣∣
O∩O′

then there exists a unique v ∈ C∞(O ∪O′) with

v
∣∣
O

= u, v
∣∣
O′ = u′.

The support, supp(u), of u ∈ C∞(S) is associated to this structure – it is the
largest closed set (which exists as a consequence of the conditions above) on the
complement of which the function vanishes. In this case the support is also the
closure of the set on which the function is non-zero, but better use the first definition
in general). All this is fine on any manifold.

Basic real analysis allows us to construct partitions of unity on any manifold (not
necessarily compact) S. If Oa, a ∈ A, is any covering of S by open sets then there
is a partition of unity subordinate to it. Namely there is a countable collection of
functions χi ∈ C∞(S), i ∈ N, a map α : N −→ A such that supp(ui) b Oα(i) (is a
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compact subset of) and additionally

(30)

K b S =⇒ {i ∈ I; supp(u)i) ∩K 6= ∅} is finite∑
i

χi(x) = 1 ∀ x ∈ S.

The first condition implies that the sum in the second is finite over any compact
set.

Now, C∞(S) is actually a topological vector space, in fact it is a Fréchet space
(on any manifold) and a Montel space (on any compact manifold). The topology
is given by a collection of seminorms, which in the compact case can be combined
into norms, given by the coordinate charts

(31) u 7−→ ‖(F−1)∗χu‖Ck , χ ∈ C∞(S). supp(u) ⊂ U
Although there are a lot of these ‘Ck norms’ the countable collection given by a
partition of unity subordinate to a coordinate cover suffices to give the topology.

So, once we have C∞(S) – for any manifold – we can define the ‘usual objects’.
Let’s be quasi-algebraic-geometers and think of points in S as determining ideals

(32) Ix = {u ∈ C∞(S);u(x) = 0}, C∞(S)/Ix = C, u −→ u(x)

so the ideals also determine the points. Now let I2
x be the ideal

(33) Ix =

{
u ∈ C∞(S);u =

∑
finite

uivi, ui, vi ∈ Ix

}
the finite span of products of elements. These are the functions vanishing to second
order (or is it first order??) at x. The quotient is by definition

(34) T ∗xS = Ix
/
I2
x the cotangent fibre at x.

Taylor’s theorem and a little manipulation tells us it is a vector space of the same
dimension as S – in this case 2. Moreover, there is a (surjective) linear map

(35) d : C∞(O) 3 u 7−→ [u− u(0)] ∈ T ∗xS, x ∈ O open

which is the first manifestation of the deRham differential. Coordinates give a basis
for T ∗xS for any x ∈ U, namely dy1 and dy2 form a basis.

Using this

(36) T ∗S =
⋃
x∈S

T ∗xS becomes a manifold of dimension 2 dimS = 4.

Namely the coordinate charts are U ×Rn where F : U 7−→ U ′ and the coordinates
are the maps

(37) (x, d(ξ · y)) 7−→ (F (x), (F−1)∗(ξ · dy) ∈ U ′ × Rn, ξ · y =
∑
i

ξiyi

and the ‘Jacobian matrix’ (F−1)∗ is just the induced map on ideals coming from
the pull-back map on functions.

I have defined the cotangent bundle first, but the tangent bundle is just as
significant. It is most directly defined pointwise as the space of derivations on
C∞(S) :

(38) TxS = {v : C∞(S;R) −→ R linear and such that

v(φψ) = φ(x)v(ψ) + (v(φ))ψ(x) ∀ φ, ψ ∈ C∞(S;R)}.
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Then it follows that v
∣∣
I2 = 0 so there is a well-defined pairing

(39) T ∗xS × TxS −→ R
which is ‘perfect’, i.e. identifies each as the dual of the other. Similar arguments as
above show that

(40) TS =
⋃
x∈S

TxS

is also a smooth manifold of dimension 2 dimS.
Both these manifolds are vector bundles. A real (complex) vector bundle over a

manifold S is another manifold V with a surjective smooth map

(41) π : V −→ S

such that the preimage Vx = π−1(x) ⊂ V has the structure of a real (complex)
vector space of fixed dimension (maybe only constant over components of S, usage
varies) and such that each x ∈ S has an neighbourhood O over which V is ‘trivial’
in the sense that there is a fibre-linear diffeomorphism τ giving a commutative
diagramme with the projection

(42) π−1(O)
τ //

π
##

O × Rm(Cm)

πO
yy

O

0.4. Background. Note that this can always be brought into the foreground!

• Manifolds recalled. Regularity sheaves on a model space. Our models are
Rn, or more generally Rn+ = [0,∞)n, and Cn – or correspondingly CnD,
which is Cn ‘marked’ by the normally intersecting divisors

(43) D =

n⋃
i=1

Di, Di = {zi = 0}.

On Rn we consider a subsheaf F(U) ⊂ C(U) of rings of the sheaf of
continuous functions. The cases we might consider are things like

– Ck,α(U) (Hölder)
– Hs

loc(U) (Sobolev), s > n/2
– C∞(U) (smooth)
– A(U) (real analytic)

on U ⊂ Rn open or U ⊂ Rn+ (relatively) open, or
– O(V ) (holomorphic) on V ⊂ Cn open.

In fact the main cases of interest here are the two cases of C∞ and holo-
morphic (just called complex) structures.

All these spaces have the following ‘formality’ property.

Proposition 1. Any linear bijection L : F(U2) −→ F(U1), U1, U2 open,
which preserves products (no continuity assumption required) is induced by
pull-back under a uniquely determined map F : U1 −→ U2 with components
in F(U1) which has a two-sided inverse G : U2 −→ U1 with components in
F(U2).
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