PROBLEM SET 3, 18.157

'DUE' MONDAY 3 MARCH, 2014, 7AM

The resolvent. See what you can make of this! If it is confusing please ask. Mainly intended to get you thinking about these constructions.

Let $A \in \Psi^{m}(M ; V), m>0$, an integer be a (formally) self-adjoint and elliptic pseudodifferential operator acting on sections of a Hermitian vector bundle over a compact manifold M, equipped with a smooth density $0<\nu \in \mathcal{C}^{\infty}(M ; \Omega)$. If the bundle is a problem, drop it and work with the scalar case - the difference is mainly in the notation anyway.

The formal self-adjointness means just that in terms of the pairing on the fibres of V and the volume form

$$
\begin{equation*}
\int_{M}\langle A u, v\rangle_{V} \nu=\int_{M}\langle u, A v\rangle_{V} \nu \forall u, v \operatorname{inC}^{\infty}(M ; V) . \tag{1}
\end{equation*}
$$

For $\lambda \notin \mathbb{R}$ show that

$$
\begin{equation*}
R(A, \lambda)=(A-\lambda)^{-1} \in \Psi^{-m}(M ; V) \tag{2}
\end{equation*}
$$

exists as the unique 2 -sided inverse.
Do it as cleanly as possible!
(1) Use elliptic regularity to show that A really is self-adjoint with domain the Sobolev space $H^{m}(M ; V)$ and that

$$
\begin{equation*}
A-\lambda: H^{m}(M ; V) \longrightarrow L^{2}(M ; V) \tag{3}
\end{equation*}
$$

is an isomorphism.
(2) Observe that $R(A, \lambda)$ should have homogeneous principal symbol $\sigma_{m}(A)^{-1}$ and that an operator $R_{0} \in \Psi^{-m}(M ; V)$ with this symbol exists.
(3) Show that $(A-\lambda) R_{0}=\operatorname{Id}-E_{1}(\lambda)$ with $E_{1}(\lambda) \in \Psi^{-1}(M ; V)$.
(4) Use asymptotic completeness to construct $B(\lambda) \in \Psi^{-1}(M ; V)$ such that

$$
\left(\operatorname{Id}-E_{1}(\lambda)\right)\left(\operatorname{Id}-B(\lambda)=\operatorname{Id}-E_{\infty}(\lambda), E_{\infty}(\lambda) \in \Psi^{-\infty}(M ; V)\right.
$$

(5) Use this to modify $R_{0}(\lambda)$ to $R_{\infty}(\lambda)$ to get an inverse modulo smoothing errors - first on the right, then on the left and then show that these differ by a smoothing operator
(6) Use the fact that the smoothing operators form a 'corner':

$$
\begin{equation*}
\Psi^{-\infty}(M ; V) \mathcal{B}\left(L^{2}(M ; V) \Psi^{-\infty}(M ; V) \subset \Psi^{-\infty}(M ; V)\right. \tag{4}
\end{equation*}
$$

(7) Check that
(8) Maybe a little more thought required here! Show that $R(\lambda)$ extends to a meromorphic function on \mathbb{C} with poles only at a discrete set of point on the real axis near which it looks like

$$
\begin{equation*}
R(\lambda)=\left(\lambda-\lambda_{i}\right)^{-1} P_{i}+E(\lambda) \tag{6}
\end{equation*}
$$

with P_{i} a finite rank smoothing operator which is a projection and $E(\lambda)$ holomorphic near $\lambda_{i} \ni \mathbb{R}$. Holomorphy here and above can be strong - the Taylor series in bounded operators on L^{2} (or any Sobolev space) converges in norm (or even with values in the pseudodifferential operators if you can work out what this means).

