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RICHARD MELROSE

Read:

(1) Today I will finish the proof of the characterization of distributions with
support in 0 and start talking about convolution of distributions:
(2) Supports

(1) Ce (R ——&'(R")——C">*(R")

C&(R")—— S(R")——C=(R")

(3) Convolution. We extend from the smooth case to the case with one dis-
tributional factor and then to both factors being distributions (with one
always compactly supported) as follows:-

(2)
o *Y(x /¢ y)dy both smooth =

J@xv)om dw—/<z> e dydm-/qﬁ (@ % 1)(w), $(=) = ¥(~2).
u* Y(x) = u(¢d(x — ) one smooth
w*v(p) = u(® * p) both distributions.

(4) This means we get
C®(R™) * C(R™) C C*(R™)
CZ(R™) # CF(R™) € CF(R™)
CT=(R™) * CZ(R™) € C=(R™)
3
@) €% (R") + C2(B") € C¥(B")
CT(R™) + €< (R™) C CT(R™)
Co *(R™)  Co=(R") € €™ (R™).
(5) do gives the identity 0 * u = w.
(6) (Next week) The concept of a fundamental solution P(D)E = §;.
(7) For a non-constant polynomial P(D) cannot have a fundamental solution
of compact support.
(8) Examples: A.
(9) Ellipticity
So I went off the rails a little on Tuesday, talking about things I meant to leave

until a little later. Here is a brief version of what I talked about.
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Suppose 2 C R™ is open. We have associated two spaces of smooth ‘test’ func-
tions with 2, namely

C*(Q) = {¢: Q — C infinitely differentiable} and
C () = {¢ € C=(Q); supp(¢) € 2}

So the smaller space consists of the smooth functions on Q which vanish outside
a compact subset of (). Because this, if we just extend and element ¢ € C°(Q2) to
be zero outside 2 the result is a smooth function. So it is natural to ignore the
difference and to regard

(5) C=(Q2) C CX(R™)

as the subspace with (compact) supports which happen to be in €.

In the homework this week you are supposed to examine the dual space to C*> ()
which is a Fréchet space. Let me think about the dual of C°(92) which is not a
Fréchet space.

We can decompose C°(€2) according to where the supports lie:-

(6) Cx(Q) = | Cx(K), C(K) = {¢ € C(R");supp(¢) C K}
KeQ

(4)

Each of these spaces, C2°(K) (which consists of the smooth functions on R"™ which
vanish on R™ \ K) is a closed subspace of S(R™) and hence a Fréchet space in
its own right. This is clear from the fact that convergence in S(R™) certainly
implies convergence of each derivative uniformly on compact sets — so the limit of
a convergent sequence in C°(K) vanishes outside K. In fact the same topology is
obtained just by using the countably many ‘C* norms’, the sum of the supremum
norms of the derivatives up to order k for each k.

So we know a suitable topology on C°(K). The union in (6) is topologized as
the ‘inductive limit’. In concrete terms this just means that
(7)
Cr(2) D O is open iff ONCE(K) is open in the norm topology for each K & .

We can replace this by the countably many conditions that O N C°(K;) be open
for an exhaustion K of 2.
Then a (general) distribution on {2 is an element of the dual space

(8) C™(Q) = (€(Q)) = {u:CX(2) — C linear and continuous.}.

The left equality here is defining the notation.
Now from the definition of the topology, continuity means that the inverse image
of the open unit ball in C is open, so

{¢ € C(K); lu(g)| < 1} € C(K)

must be open. We know that this implies there must be an open ball in C°(K)
with respect to one of the C*-norms on which |u(¢)| < 1. This just means, watching
the quantifiers carefully, that

(9) For each K & Q there exist C, k such that
[u(@)] < Clldllex ¥V ¢ € C(), supp(¢) C K.

The converse follows as well. So that is continuity, and hence the definition of

C—2(Q).
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Now, I did this now because we are talking about supports and I wanted to
mention that

Proposition 1. The spaces C°(Q), C*(2), C=>°(2), LL (), LE () form sheaves
over R™.

A pre-sheaf of vector spaces over a topological space T is an ‘assigment’ (i.e.
there is a functor doing the assigning) of a vector space P(U) to each open set
U C T together with linear ‘restriction maps’

(10) Ryy : P(V) — P(U) whenever V D U
satisfying the two conditions
(11) RU,U = Id, RU,V o RV,W = RU,W ifucCcvcw.

Note that as usual this is completely abstract — you do not know what the vector
spaces are or how these ‘so-called restriction maps’ are defined, just that they do
exist.

All the spaces liste in the Proposition satisfy this where restriction for functions
is the obvious notion and restriction for a distribution from €2 to a smaller open set
Q' C Q just corresponds to limiting the domain, the space of test functions on which
it acts, from C°(2) to C°(). Note that when the function spaces are mapped
into C~°°(Q)), via the usual ‘weak realization’ by pairing with test functions, the
restriction maps agree with the distributional definition.

Now, a pre-sheaf is a sheaf if it satisfies two more (related) conditions for any
pair of open sets U and V. Namely

1) Ifue PUUV) and Ryyuvu =0= Rypyuvu then u=0in P(UUV).
(12) 2) Ifu €eP(U) and v € P(V) are such that Rynv,yu = Runv,vv
then 3 w € P(U UYV) satisfying w = Ry yuvw, v = Ryyuvw.

The first condition implies that the w in the second condition is unique. The idea
is that the elements of the P(U) for a sheaf are ‘function-like’ objects.

So, I leave it to you to check the details that the function spaces listed above
satisfy these conditions — and that something like L(£2) (without the ‘loc’) does
not [Try to say clearly why it does not].

Now, let’s prove that the C7°°(2) do form a sheaf. So, suppose u is as in
condition 1). Then, take ¢ € C°(U U V). The compactness of supp(¢) € U UV
allows the result from last lecture to be applied to show that there exist functions
Xu € C(U) and xy € C°(V) such that xu + xv = 1 on supp(¢). This means

(13) ¢ =(xv +xv)¢ = (xve) + (xve) = ¢u + dv, ¢u € C°(U), ¢v € C°(V).
From this we see that
(14) w(¢) =u(dy) +u(dpy) =0—u=00onUUV.

So we have 1).
Now, suppose u and v are as in 2). For ¢ € C*°(UUV') we can use (13) to define
w by

(15) w(¢) = u(dv) +v(dv)
since the right side makes sense. We need to check that w is an element of C~>° (U U

V) which means in particular that the definition does not depend on the choices
made in defining ¢y and ¢y . A different choice comes from different choices of
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Xy € C(U) and xi, € C°(V) such that x7, + x}, = 1 on supp(¢). The difference
in the two versions of the right side in (15) is

(16) u(xv¢) +vixve) —ulxyd) — vixye) = u((xv — X)) +v((xv — Xxv)¢)-

Notice however that x;; + X1 = xv + xv so (xiy — xv) = —(x} — xv)- One side
has compact support in U and the other has compact support in V' so both, being
equal, must have compact support in U N V. Since v = v on U NV by hypothesis,

(17) u((xv = xv)9) + v((xv = xv)¢) = 0.
The definition of w does not depend on which xy, xv we use.

I leave it to you to check from (15) that w is linear and satisfies the continuity
condition to imply that w € C7°°(U U V); to do so note that the same yy and xy
can be used when supp(¢) C K for a fixed K € U UV, and that it restricts to be
w and v on U and V.

Okay, so that is what I was talking about on Tuesday.
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