
18.155 LECTURE 7

28 SEPTEMBER, 2017

RICHARD MELROSE

Read:

(1) Today I will finish the proof of the characterization of distributions with
support in 0 and start talking about convolution of distributions:

(2) Supports

(1) C−∞c (Rn) �
� // S ′(Rn) �

� // C−∞(Rn)

C∞c (Rn)
?�

OO

� � // S(Rn)
?�

OO

� � // C∞(Rn)
?�

OO

(3) Convolution. We extend from the smooth case to the case with one dis-
tributional factor and then to both factors being distributions (with one
always compactly supported) as follows:-

(2)

φ ∗ ψ(x) =

∫
φ(y)ψ(x− y)dy both smooth =⇒∫

(φ ∗ ψ)(x)µ(x)dx =

∫
φ(y)ψ(x− y)µ(x)dydx =

∫
φ(y)(ψ̌ ∗ µ)(y), ψ̌(z) = ψ(−z).

u ∗ ψ(x) = u(φ(x− ·) one smooth

u ∗ v(µ) = u(v̌ ∗ µ) both distributions.

(4) This means we get

(3)

C∞(Rn) ∗ C∞c (Rn) ⊂ C∞(Rn)

C∞c (Rn) ∗ C∞c (Rn) ⊂ C∞c (Rn)

C−∞(Rn) ∗ C∞c (Rn) ⊂ C∞(Rn)

C−∞c (Rn) ∗ C∞c (Rn) ⊂ C∞c (Rn)

C−∞(Rn) ∗ C−∞c (Rn) ⊂ C−∞(Rn)

C−∞c (Rn) ∗ C−∞c (Rn) ⊂ C−∞c (Rn).

(5) δ0 gives the identity δ0 ∗ u = u.
(6) (Next week) The concept of a fundamental solution P (D)E = δ0.
(7) For a non-constant polynomial P (D) cannot have a fundamental solution

of compact support.
(8) Examples: ∆.
(9) Ellipticity

So I went off the rails a little on Tuesday, talking about things I meant to leave
until a little later. Here is a brief version of what I talked about.
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Suppose Ω ⊂ Rn is open. We have associated two spaces of smooth ‘test’ func-
tions with Ω, namely

(4)
C∞(Ω) = {φ : Ω −→ C infinitely differentiable} and

C∞c (Ω) = {φ ∈ C∞(Ω); supp(φ) b Ω}

So the smaller space consists of the smooth functions on Ω which vanish outside
a compact subset of Ω. Because this, if we just extend and element φ ∈ C∞c (Ω) to
be zero outside Ω the result is a smooth function. So it is natural to ignore the
difference and to regard

(5) C∞c (Ω) ⊂ C∞c (Rn)

as the subspace with (compact) supports which happen to be in Ω.
In the homework this week you are supposed to examine the dual space to C∞(Ω)

which is a Fréchet space. Let me think about the dual of C∞c (Ω) which is not a
Fréchet space.

We can decompose C∞c (Ω) according to where the supports lie:-

(6) C∞c (Ω) =
⋃

KbΩ

C∞c (K), C∞c (K) = {φ ∈ C∞c (Rn); supp(φ) ⊂ K}.

Each of these spaces, C∞c (K) (which consists of the smooth functions on Rn which
vanish on Rn \ K) is a closed subspace of S(Rn) and hence a Fréchet space in
its own right. This is clear from the fact that convergence in S(Rn) certainly
implies convergence of each derivative uniformly on compact sets – so the limit of
a convergent sequence in C∞c (K) vanishes outside K. In fact the same topology is
obtained just by using the countably many ‘Ck norms’, the sum of the supremum
norms of the derivatives up to order k for each k.

So we know a suitable topology on C∞c (K). The union in (6) is topologized as
the ‘inductive limit’. In concrete terms this just means that
(7)
C∞c (Ω) ⊃ O is open iff O ∩ C∞c (K) is open in the norm topology for each K b Ω.

We can replace this by the countably many conditions that O ∩ C∞c (Kj) be open
for an exhaustion Kj of Ω.

Then a (general) distribution on Ω is an element of the dual space

(8) C−∞(Ω) = (C∞c (Ω))′ = {u : C∞c (Ω) −→ C linear and continuous.}.

The left equality here is defining the notation.
Now from the definition of the topology, continuity means that the inverse image

of the open unit ball in C is open, so

{φ ∈ C∞c (K); |u(φ)| < 1} ⊂ C∞c (K)

must be open. We know that this implies there must be an open ball in C∞c (K)
with respect to one of the Ck-norms on which |u(φ)| < 1. This just means, watching
the quantifiers carefully, that

(9) For each K b Ω there exist C, k such that

|u(φ)| ≤ C‖φ‖Ck ∀ φ ∈ C∞c (Ω), supp(φ) ⊂ K.

The converse follows as well. So that is continuity, and hence the definition of
C−∞(Ω).
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Now, I did this now because we are talking about supports and I wanted to
mention that

Proposition 1. The spaces C0(Ω), C∞(Ω), C−∞(Ω), L1
loc(Ω), L2

loc(Ω) form sheaves
over Rn.

A pre-sheaf of vector spaces over a topological space T is an ‘assigment’ (i.e.
there is a functor doing the assigning) of a vector space P (U) to each open set
U ⊂ T together with linear ‘restriction maps’

(10) RU,V : P (V ) −→ P (U) whenever V ⊃ U
satisfying the two conditions

(11) RU,U = Id, RU,V ◦RV,W = RU,W if U ⊂ V ⊂W.
Note that as usual this is completely abstract – you do not know what the vector
spaces are or how these ‘so-called restriction maps’ are defined, just that they do
exist.

All the spaces liste in the Proposition satisfy this where restriction for functions
is the obvious notion and restriction for a distribution from Ω to a smaller open set
Ω′ ⊂ Ω just corresponds to limiting the domain, the space of test functions on which
it acts, from C∞c (Ω) to C∞c (Ω′). Note that when the function spaces are mapped
into C−∞(Ω), via the usual ‘weak realization’ by pairing with test functions, the
restriction maps agree with the distributional definition.

Now, a pre-sheaf is a sheaf if it satisfies two more (related) conditions for any
pair of open sets U and V. Namely

(12)

1) If u ∈ P (U ∪ V ) and RU,U∪V u = 0 = RV,U∪V u then u = 0 in P (U ∪ V ).

2) If u ∈P (U) and v ∈ P (V ) are such that RU∩V,Uu = RU∩V,V v

then ∃ w ∈ P (U ∪ V ) satisfying u = RU,U∪V w, v = RV,U∪V w.

The first condition implies that the w in the second condition is unique. The idea
is that the elements of the P (U) for a sheaf are ‘function-like’ objects.

So, I leave it to you to check the details that the function spaces listed above
satisfy these conditions – and that something like L1(Ω) (without the ‘loc’) does
not [Try to say clearly why it does not].

Now, let’s prove that the C−∞(Ω) do form a sheaf. So, suppose u is as in
condition 1). Then, take φ ∈ C∞c (U ∪ V ). The compactness of supp(φ) b U ∪ V
allows the result from last lecture to be applied to show that there exist functions
χU ∈ C∞c (U) and χV ∈ C∞c (V ) such that χU + χV = 1 on supp(φ). This means

(13) φ = (χU + χV )φ = (χUφ) + (χV φ) = φU + φV , φU ∈ C∞c (U), φV ∈ C∞c (V ).

From this we see that

(14) u(φ) = u(φU ) + u(φV ) = 0 −→ u = 0 on U ∪ V.
So we have 1).

Now, suppose u and v are as in 2). For φ ∈ C∞(U ∪V ) we can use (13) to define
w by

(15) w(φ) = u(φU ) + v(φV )

since the right side makes sense. We need to check that w is an element of C−∞(U ∪
V ) which means in particular that the definition does not depend on the choices
made in defining φU and φV . A different choice comes from different choices of
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χ′U ∈ C∞c (U) and χ′V ∈ C∞c (V ) such that χ′U + χ′V = 1 on supp(φ). The difference
in the two versions of the right side in (15) is

(16) u(χUφ) + v(χV φ)− u(χ′Uφ)− v(χ′V φ) = u((χU − χ′U )φ) + v((χV − χ′V )φ).

Notice however that χ′U + χ′V = χU + χV so (χ′U − χU ) = −(χ′V − χV ). One side
has compact support in U and the other has compact support in V so both, being
equal, must have compact support in U ∩ V. Since u = v on U ∩ V by hypothesis,

(17) u((χU − χ′U )φ) + v((χV − χ′V )φ) = 0.

The definition of w does not depend on which χU , χV we use.
I leave it to you to check from (15) that w is linear and satisfies the continuity

condition to imply that w ∈ C−∞(U ∪ V ); to do so note that the same χU and χV

can be used when supp(φ) ⊂ K for a fixed K b U ∪ V, and that it restricts to be
u and v on U and V.

Okay, so that is what I was talking about on Tuesday.
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